SECTION 6. PROGRAMMING CONSIDERATIONS
PC-700/900 Programmable Controllers

6-1. MEMORY AND REGISTER USE

When memory has been erased from a Numa-
Logic Programmable Controller, the program
loader displays the number of words remaining.
This number is always two less than anticipated
(e.g., 8192 is displayed as 8190, 1536 is shown
as 1534, etc.). This occurs because two words of
the total memory are not available for use, and,
therefore, are not included in the “words
available” tabulation.

The reason that these two words of memory are
unavailable is that one is used to designate the
End of Program (EOP) and the other indicates the
first holding register (HR0001). (See Figure 6-1.)
The program, consisting of ladder diagrams,
uses memory from the bottom, pushing up the
location of the EOP word after checking to
ensure that memory is available for each ladder
diagram before it is input.

Registers are assigned memory from the top (as
illustrated in Figure 6-1), starting at HR0001. The
Numa-Logic Programmable Controller assumes
that a reference has been made to HR0001, even
if no such reference has been made. The
controller keeps track of the Highest Register
Reference Used (HRRU) and uses this value (in
reference to HR0O001) to set aside a block of

(user) memory for holding register use. If, for

example, HR0200 is the only holding register
reference made in the program, 200 words of
user memory are set aside even though no other
holding registers are used. When programming,
it is important to reference holding registers
starting with HR0OO1.

Noting the significance of the HRRU, the amount
of memory required for a given program can be
easily established by using Table 6-1. For
example, a simple program might consist of the
following elements:

6-1

10 - IN contacts @ 1 word = 10 words
3-CRcontacts @ 1word = 3 words
2 - Timers @ 3 words = 6 words
1 - Down Counter @ 3 words = 3 words
3 - CR coils @ 1word = 3 words

25 words
HRRU = 6 words
31 words

EOP = 1 word

32 words total

6-2. PROM-EQUIPPED UNITS

The Numa-Logic PC-900 is available with a mix
of Programmable Read Only Memory (PROM)
and Random Access Memory (RAM) in three
versions. These are illustrated in Figure 6-2.
Several requirements and variable conditions
must be considered before the appropriate mix
can be selected. Consider the following:

¢ The ladder diagram must be in PROM. (For
this reason, the PROM-equipped units are
not available in an online programming
version.)

e Seven words of PROM must be allocated
past the EOP for internal “housekeeping”
functions. The memory remaining must
also be greater than or equal to seven.

e RAM is devoted to holding registers (HRs).
Thus, with 512 words of RAM, the first
holding register locations in PROM would
be HR0513, and with 1536 words of RAM,
HR1537.

¢ Battery backup may be used to retain data
in RAM. If, however, the battery backup is
not used, RAM is zeroed at power up,
setting the output registers and holding
registers (located in RAM) to zero, as well
as clearing force conditions.

e« Contents that must be periodically

changed (i.e., fine-tuned) must be put into
RAM.

9/84

16 0
HRO0001
g BLOCK OF MEMORY SET ASIDE
FOR HOLDING REGISTER USE
o~
+f— HRRU

A co

BLOCK OF MEMORY USED TO
STORE LADDER DIAGRAMS

MOST RECENTLY PROGRAMMED
LADDER DIAGRAM

NOTE

THE CONTROLLER ALWAYS CHECKS THAT
SUFFICIENT MEMORY S AVAILABLE BEFORE
ACCEPTING A LADDER DIAGRAM OR A REGISTER
REFERENCE.

Figure 6-1. Program/Register Memory Assignment

9/84 6-2

- TABLE 6-1. MEMORY/REGISTER USE

@)

Function

| Mnemonic

Memory
Use
(Words)

- Input
Designation

Data Storage and Register Options

Constant
Value

HR

OR

I1G

oG

Add, Subtract

AD,SB

4

Operand 1

Operand 2

Destination

T AND Matrix, OR Matrix
XOR Matrix

AM,OM,
XM

Matrix Size

Matrix 1
End

Matrix 2
End

Destination
End

Ascending Sort

AS

Table
Length

Table 1 End

‘1 Table 2 End

ASCIIl Transmit

AT

- Return
-Register

Table End

Pointer

Destination

Bit Operate

BO

Table
Length

“ Table End

Pointer

Bit Pick Contact,
NO or NC

BP

Bit Set, Bit Clear,
Bit Follow

BS,BC,

Bit
Number

Register
Type

Block Transfer

BT

Table
Length

Source End

Destination
End

Close Table

CT

Table
Length

Table End

Pointer

Destination

6-3

-9/184

TABLE 6-1. MEMORY/REGISTER USE (Cont’d)

Memory Data Storage and ‘Register Options
Use Input Constant
Function Mnemonic | (Words) Designation Value HR | IR [OR | IG | OG
Comparisons EQ,GE 3 Operand 1 . . .
Operand 2
Complement Matrix CM 5 Matrix Size .
Source End
Destination . . .
End '
Continuous Group Select CG 3 Operand 1 . .
Continuous Select CS 3 Operand 1 .
Conversions, Move BD,DB, 4 Source] ° . . .
MV Destination . . .
Control Relay Contact, CR 1
NO or NC
Counters UC,DC 3 Preset
Actual . .
Divide DV 4 Operand 1 * . .
(Pair)
Operand 2
Destination . .
(Pair)
Drum Controller DR 5 Number of .
Steps
Starting .
Register
Step . .
Pointer
Destination . .
End of Program EOP
First In Stack Fl 6 Table .
Register-to-Table Move RT Length
Table End . . .
Pointer . .
Source
First Out Fetch FO 6 Table .
Last Out Fetch LO Length
Table End . . .
Pointer o .
Destination . . .
Input Contact,
NO or NC IN 1

9/84 6-4

TABLE 6-1. MEMORY/REGISTER USE (Cont’d)

®

Function

Mnemonic

Memory
Use
(Words)

Input
Designation

Data Storage and Register Options

Constant
Value

HR

OR

oG

I/O Update Immediate

ul

2

1[0]
Register
Group/Pair

Loop Controller

LC

Set Point

Process
Variable

Output

Loop
Table End

Master Control Relay, Skip

MR,SK

Number of
Coils

Multiply

MP

Operand 1

Operand 2

Destination
(Pair)

N Bit Serial Shift Register

NR,NL

Table
Length

Table End

N Bit Field

Open Table

oT

Table
Length

Table End

Pointer

Source

Reset Watchdog Timer

RW

Operand 1

Restore Program Counter

RP

Operand 1

Save Program Counter

SP

Operand 1

Search Matrix

SM

Ojlw|w|w

Matrix Size

Matrix End

Bit
Register

Shift Registers

SR,SL

Starting
Register

Number of
Registers

Square Root

sQ

Source

Destination

6-5

9/84

®

TABLE 6-1. MEMORY/REGISTER USE (Cont’d)

Function

Mnemonic

Memory
Use
(Words)

Input
Designation

Data Storage and Register Options

Constant
Value

HR

IR

OR

IG

oG

Table Lookup
Table Lookup Ordered

TL
T0O

6

Table
Length

Table End

Pointer

Source

Table-to-Register Move

TR

Table
Length

Table End

Pointer

Destination

Timers

TS, TT

Preset

Actual

Update Select

us

/O Quarter

Dummy
Operand

9/84

HROO0O01 HRO0001 HR0001
. S A S W SN WS s SR s S — E——— I -----—----—.
512 512 1536
RAM RAM RAM
s ey e W S W S s w D S S ——--—------—‘ --“--------—
HRO512 HR0512 HR1536
HRO513 HRO0513 HR1537
1024 2048 1024
PROM PROM PROM
VERSION 1 VERSION 2 VERSION 3

Figure 6-2. Combinations of RAM and PROM Available with the Numa-Logic PC-900

6-7

9/84

@

Programming involves program development
using a RAM processor and transference of the
completed program to PROM. A Numa-Logic
PROM burning unit is available as an option with
the programmable controller if users are to burn
their own PROM. Factory-supplied PROM
burning services are also available.

6-3. COIL UTILIZATION

Output coils, either control relay (CR) or special
function, can be programmed in a variety of
ways. In any case, it is important to note that an
effective program not only performs its function
(although this is essential), but is also designed
to increase efficiency and to decrease memory
consumption. The programmer determines the
manner in which techniques are applied to
optimize both time and storage space. With
practice, the programmer becomes adept at
structuring programs for effectiveness. Some of
the techniques used to achieve this objective are
discussed in this section. They are:

* Dummy coils

* Oscillator circuits

* Transitional functions
* Programming order

* Multiple programs
6-4. DUMMY COILS

It might appear, at first, that the easiest method
of developing a “dummy” coil (a coil that is never
energized and whose contacts never change
state) is simply not to program the coil. However,
in practice, there are two conditions that make
this impractical. The first is that the coil could
be forced ON and with no logic to cause it to
change state, remain ON when the force is
deleted. The second drawback is that if someone
else uses the program, an undocumented
dummy coil could be programmed to serve
another function, thereby, creating confusion
and potential danger.

9/84

The best method for programming a dummy coil
is illustrated in Figure 6-3. As shown, forcing coil
CR0127 causes its contacts to change state.
When the force is removed, the coil returns to
the OFF state. In addition to consistently
functioning properly, another benefit of using
this circuit is that the coil is documented on any
printout or drawing, preventing erroneous future
use of the coil.

CR0O127

| | > Y
| I T

CRO127 CRO0127

Figure 6-3. Dummy Coil Circuit
6-5. OSCILLATOR CIRCUITS

If an oscillator signal is required and the time
interval is not critical, a simple oscillator can be
programmed as illustrated in Figure 6-4. In this
circuit, the scanning technique used in the
processor causes the processor to see CR0126
as being OFF and the NC contacts of CR0126 as
being closed (because CR0126 is OFF); it then
energizes Coil CR0126. On the next scan, the
processor sees Coil CR0126 as being ON, and
CR0126 NC contacts as open (because Coil
CRO0126 was energized during the last scan); Coil
CR0126 will then be turned OFF. The cycle then
repeats itself. Coil CR0126 is ON every other
scan.

CR0O126 CR0O126

N
N

Figure 6-4. Oscillator Circuit

6-6. TRANSITIONAL FUNCTIONS

Many of the special and extended functions are
transitional in operation. This means that a
change in state of a set of contacts (non-
conducting to conducting) is required to perform
the function. Following are some examples of
functions that are transitional in operation:

e Add

e Conversions

* Counters

¢ Divide

¢ Drum Controller
e Multiply

e Shift Registers
e Subtract

For example, in the case of counters, shift
registers and drum controllers, transitional
operation is a necessary and desired part of the
function. However, in the case of the arithmetic
and conversion function, this may or may not be
desirable. If the processor does not have a
Continuous Select (CS) function, scanning can
be made to occur on a continuous (every scan)
basis by using the format illustrated in Figure
6-5.

This form requires only that the second coil be
that of a transitional function. In the example
shown in Figure 6-5, UC0126 could be used. The
assignment of operand and designation is
unimportant, since the function is not used. (See
paragraph 6-1 for a discussion on the HRRU and
register manipulation.)

6-7. PROGRAM ORDER

Program order is generally not critical where a
coil is placed in a particular program. However,
when determining program order, instances do
occur that require careful consideration of the
location of a coil in a certain program. it is

@)

important to avoid the following situations, as
improper program order can result in many hours
of problem analysis.

Example 1

The circuit shown in Figure 6-6 illustrates one of
these situations. Since Coil CR0059 is currently
OFF, Coil CR0025 energizes via the CR0059 NC
contacts. Coil CR0011 does not energize
because the NO contact of CR0059 is open.
Since Coil CR0025 is now energized, Coil CR0059
is energized. Scanning the circuit a second time
finds the NC contacts of CR0O059 now open,
turning Coil CR0025 OFF. CR0011 does not
energize because this time the NO contacts of
CR0025 are open and Coil CR0059 turns OFF. As
a result, CR0025 and CR0059 alternate ON/OFF,
and CRO0011 is never ON. The situation is
demonstrated below:

Coil Scan1 Scan2 Scan 3 Scan 4

CR0025 ON OFF ON OFF
CR0011 OFF OFF OFF OFF
CR0O059 ON OFF ON OFF

To change this situation to produce the desired
result, all that is required is a change in the
program order. Figure 6-7 illustrates what is
required to correct the programming discussed
above; the results of this program order are
demonstrated below:

Coil Scan1 Scan2 Scan3 Scan 4

CR0025 ON OFF ON OFF
CRO0011 ON OFF ON OFF
CR0059 ON OFF ON OFF

Example 2

Another situation that requires attention to
program order occurs in the use of output
groups, as with a drum controller. In Figure 6-8,
the drum controller is identified by the coil
reference number 0001. Its destination is the
OGO0001. OGO0001 consists of the discrete
outputs 1 through 16. Placing the coil reference
number in the same output group as the
destination defeats the purpose. The drum
controller will not run, as it is trying to control
itself.

9/84

CR0127
CRO127 . CRO127
| | \L
|| L
OPERAND 1 e
ORI 27 ‘HRO0O1
-~ |
AN OPERAND 2
ALWAYS 0001
ENABLED
DESTINATION
HRO001
ADO0126
OPERAND 1
C?°|127 HRO0O1
| OPERAND 2
" NEVER 0
ENABLED DESTINATION 5 WORDS
HR0001

THIS CIRCUIT
ESTABLISHES
CRO127 AS A

DUMMY COIL.

INCREMENT
HRO0O1 BY 1.
EVERY SCAN
APPEARS TO THE
PROCESSOR AS A
TRANSITION TO
ON.

THIS CIRCUIT
MAKES THE
PROCESSOR
THINK THAT A
TRANSITION TO
OFF HAS BEEN
MADE.

9/84

Figure 6-5. Every Scan Operation

6-10

6-8. MULTIPLE PROGRAMS

Using a single machine and a single control
system, a Numa-Logic Programmable Controller
based system is capable of performing a variety
of sequences or operations on command. This
capability is desirable in many instances. In the
example shown in Figure 6-9, three separate
Drum Controller (DR) functions are used to
operate the same set of outputs (CR0017 through
CR0032) through three separate sequences. It
should be noted that this program could easily
be expanded, with the drum controllers each
assuming different lengths and each being

@)

stepped by an independent timing chain. This
example has several features that are of interest:

e Every Master Control Relay (MR) is
controlled by mutually-exclusive circuits
(i.e., the logic is such that one and only
one program can be selected at any given
time).

e If no program is selected, all outputs
(CR0017 through CR0032) are turned OFF.

e The functions are combined, when
possible, into a single coil such as Rung
1 of the program.

CR0025
CRO052
n
[™
CR0025 CR0059 CROC11
i
|
CR0025 CRO059
|
|

Figure 6-6. Improper Program Order

CR0025

CR0059 .

JP Q_"
CR0025 CROOSQ/\

| |

: _/
CRO059 CR0O025 CRO0O11

| 11

I i1

Figure 6-7. Correct Program Order

DRO001

NUMBER OF STEPS'_O_T

'l" INOOO1
0010
STARTING

INO002 REGISTER
L HRO0001

POINTER
HRO0011

LNAO0E DESTINATION
0G0001

1 1l

Figure 6-8. Drum Controller Pitfalls

6-11 9/84

i cro127 “T°
INOOO1
) (" _4 CRO127 EQUALS THE FUNCTION
| U INODO1, INODO2, OR INOOO3.
IN00O2
IN00O3
I TT0001
010127 () PROVIDES PULSES AT ON
I AT ONE SECOND
PRESE
4 | %o?oT INTERVALS TO STEP DRUM
CONTROLLERS.
CRO127 TTO00O1
| 3| ACTUAL
0—| HRO0O1
| I ™
MRO124
BRgUE Ibphi L - DRO002 IS ACTIVE IF, AND ONLY IF
I :H\ ‘HT INOOO1 IS ON AND INO002 AND INO0O3
ARE OFF.
NUMBER OF DR0002
TTO0001 STEPS
.__I 0010
STARTING
CR0127
Iy REGISTER
| HR0002
CRO’._'” POINTER
| HR0012
DESTINATION
e 0G0002 e
Figure 6-9a. Multiple Programs
9/84 6-12

®

DROOO03 IS ACTIVE IF, AND ONLY I|F,

INO002 IS ON AND INOCO1 AND
INOOO3 ARE OFF.

DRO004 IS ACTIVE IF, AND ONLY IF,

INOOO3 IS ON AND INOOO1 AND
INO002 ARE OFF.

IF NO OTHER PROGRAM IS SELECTED,

THEN HRO0035 (ZEROS) WILL BE
MOVED TO 0G0002.

™ T
MR0125
INOOO1 INODO2 IN00O3 0001
._}I I Y|
~ | I~
TT0001 DR0003
L 4
I NUMBER OF U
CRO127 STEPS
[0010
I STARTING
CRO127 REGISTER
|- HRO0013
|
POINTER
HR0023
DESTINATION
0G0002
MR0126
INODDT INO0O2 INO0O3 0001
| [ol
| 3 B | u
DR0004
TT0001
| ()—4
I NUMBER OF __/
STEPS
CR0O127 0010
® |I
| STARTING
CR0127 REGISTER
| HR0024
|
PRINTER
HR0034
DESTINATION
0G0001
MRO124 MRO0125 MRO126 MV0005
| 1 X SOURCE 2 l
" A '~ HR0035 _/
DESTINATION
0G0002
A ~

Figure 6-9b. Multiple Programs (Cont’d)

6-13/14

9/84

