
B-1

Appendix B: IMPACC and the Modbus Protocol

Overview
This appendix describes some programming aspects of using the
NetPower DeviceServer with a Modbus protocol-based system, including
the following topics:

♦ How to send commands to IMPACC devices.

♦ Modbus protocol functions supported by the NetPower
DeviceServer.

♦ Interpreting 32-bit quantities from the NetPower DeviceServer.

Sending Commands to IMPACC Devices
You can send commands to IMPACC devices from either the Modbus
Master or the NetPower DeviceServer. The Modbus Master writes (using
Modbus Functions 6 and 16) the command to a Holding Register that is
associated with the target IMPACC device. You can configure the
NetPower DeviceServer to write the command to the Holding Register
with Modbus Function 6 using one of the following methods:

♦ The NetPower DeviceServer transmits the command to the
appropriate device, and returns the device response to the Modbus
Master. If the transmission succeeded (no error occurred), the
response is normal, and the NetPower DeviceServer stores a zero in
the holding register. If the transmission failed, the response is an
exception response code (1, 2, 4, or 6), and the NetPower
DeviceServer stores the resulting return code in the high byte of the
Holding Register. For more information on Modbus Response Codes
Supported by IMPACC, see Chapter 12: Troubleshooting in the
PowerNet Software User’s Guide.

♦ The NetPower DeviceServer writes the device command to the
Holding Register and responds to the Modbus Master with a normal
response. The NetPower DeviceServer will send the command to the
appropriate device at a later time. While the command is waiting to
be sent, it remains in the Holding Register.

B-2

After the NetPower DeviceServer transmits the command
successfully (without error), it stores a zero in the Holding Register.
If the transmission failed, the NetPower DeviceServer stores the
resulting error code in the high byte of the Holding Register.

With either method, the Modbus Master can read the error code by
performing Modbus Function 3 (Read Holding Register).

A Holding Register may not be rewritten until the previous command is
completed (exception response 6). The number of consecutive Holding
Register writes (without an intervening holding or Input Register read) is
limited to 10.

The NetPower DeviceServer can write device commands to Holding
Registers via Modbus Function 16 using method 2 only.

A list of the available device commands for each IMPACC device type is
listed in Appendix B: Device Objects in the PowerNet Software User’s
Guide.

Supported Modbus Protocol Functions
The following Modbus protocol functions are supported by the NetPower
DeviceServer. Examples are provided to help you understand how to use
the Modbus protocol to define commands and interpret data.

The functions described in this appendix are used to:

♦ Read Holding Registers (Function Code 3)

♦ Read Input Registers (Function Code 4)

♦ Preset a single register (Function Code 6)

♦ Perform a Loopback Test (Function Code 8)

♦ Preset multiple Holding Registers (Function Code 16)

The following sections describe each function. For more information,
refer to the Modicon Modbus Protocol Reference Guide.

Function Code 3—Read Holding Registers
This function permits you to obtain the contents of Holding Registers at
the designated slave address

Sending a Request
Holding Registers are numbered sequentially from zero through 199 (0 =
register 40001, 1 = register 40002, . . . ,199 = register 40,200). The
Modbus Master uses these registers to send commands to IMPACC
devices. Each request can obtain the contents of up to 125 registers.

B-3

Note
The Modbus protocol uses hex format; therefore, all the values shown in the table
are in hex.

For example, the following table shows the values you would use to read
Holding Registers 40,108 through 40,110 from slave address 17:

Data

Function Start Register # of Registers Error Check

Address Code High Low High Low Low High

11 03 00 6B 00 03 76 87

Slave address.
(Hex 11 equals
decimal 17).

Starting high-byte
register (“00” if the
register contains
only one byte).

Starting low-byte
register. Hex 6B
(decimal 107)
represents holding
register 40,108.

Number of low-
byte registers to
read, beginning
from the starting
low-byte register.

Number of high-
byte registers to
read, beginning
from the starting
high-byte register.

Communication
transmission error
check sum.

The Starting Low-Byte Register column value is 6B (107 decimal), which
represents Holding Register 40,108. This register is the starting point for
counting the registers that have been read.

The # of Registers Low column indicates that three low-byte registers
will be read; thus, Holding Registers 40108, 40109, and 40110 are read.

Interpreting the Response
The addressed slave responds with its address and the function code,
followed by the information field. The information field contains two
bytes describing the quantity of data bytes to be returned. The contents of
the requested registers are two bytes each, with the binary content right-
justified within each pair of characters. The first byte includes the high
order bits. The second byte contains the low order bits.

In the following example, registers 40,108 through 40,110 have the
decimal contents 555, 0, and 100, respectively:

B-4

Data Output

Function Byte Register 40,108 Register 40,109 Register 40,110 Error Check

Address Code Count High Low High Low High Low Low High

11 03 06 02 2B 00 00 00 64 00 55

Slave address.
(Hex 11 equals
decimal 17).

Number of
bytes to
read.

Contents of the high
and low byte portions
of register 40,108. Hex
“022B” (high byte, low
byte) equals decimal
555.

Contents of the high
and low byte portions
of register 40,109.
Hex “00” equals
decimal “0” for both
fields.

Contents of the high and
low byte portions of
register 40,110. “00”
indicates no high byte.
Hex 64 equals decimal
100.

Communication
transmission
error check sum.

Function Code 4—Read Input Registers
This function permits you to obtain the contents of Input Registers

Sending a Request
Input registers are numbered sequentially from zero through 7999 as
follows:

0 = register 30001, 1 = register 30002, . . . ,7999 = register 38,000

These registers receive their values from IMPACC devices and can only
be referenced, but not altered, from within the controller or via the
Modbus. The contents of up to 125 registers can be obtained at each
request.

Note
The Modbus protocol uses hex format; therefore, all the values shown in the table
are in hex.

B-5

For example, the following table shows the values you would use to read
Input Register 30,009 from slave address 17:

Data

Function Start Register # of Registers Error Check

Address Code High Low High Low Low High

11 04 00 08 00 01 B2 98

Slave address.
(Hex 11 equals
decimal 17).

Starting high-byte
register (“00” if the
register contains
only one byte).

Starting low-byte
register. Hex 08
(decimal 8)
represents input
register 30,009.

Number of low-
byte registers to
read, beginning
from the starting
low-byte register.

Number of high-
byte registers to
read, beginning
from the starting
high-byte register.

Communication
transmission error
check sum.

The Starting Low-Byte Register value is 08 hex (8 decimal), which
represents register 30,009. This register is the starting point for counting
which registers are read.

The # of Registers Low column indicates that one low-byte register will
be read; thus, Input Register 30,009 is read.

Interpreting the Response
The addressed slave responds with its address and the function code,
followed by the information field. The information field contains two
bytes describing the quantity of data bytes to be returned. The contents of
the requested registers are two bytes each, with the binary content right-
justified within each pair of characters. The first byte includes the high
order bits. The second byte contains the low order bits.

In the following example, register 30,008 contains the decimal value 0:

B-6

Data Input

Function Byte Register 30,009 Error Check

Address Code Count High Low Low High

11 04 02 00 00 78 F3

Slave address.
Hex 11 equals

decimal 17).

Number of
bytes to read.

Contents of the high
and low byte portions
of register 30,009. Hex
“0000” (high byte, low
byte) equals decimal 0.

Communication
transmission error
check sum.

Function Code 6—Preset Single Register
This function permits you to modify the contents of a Holding Register

Important
This function overrides the controller memory protection.

Sending a Command
Holding Registers are numbered sequentially from zero through 199 (0 =
register 40001, 1 = register 40002, . . . ,199 = register 40,200).

The values are provided in binary up to the maximum capacity of the
controller. Unused high bits must be set to zero.

When used with slave address 0 (Broadcast mode), all slave controllers
load the specified register with the designated contents.

For example, the following table shows the values you would use to read
Holding Registers 40,108 through 40,110 from slave address 17:

Data

Function Register # Data Value Error Check

Address Code High Low High Low Low High

11 06 00 87 03 9E BA 2B

Slave address.
(Hex 11 equals
decimal 17).

Starting high-byte
register (“00” if the
register contains
only one byte).

Starting low-byte
register. Hex 87
(decimal 135)
represents holding
register 40,136.

Communication
transmission error
check sum.

Value to which the register will
be set (“039E” hex equals 926
decimal).

B-7

The Starting Low-Byte Register value is 87 (135 decimal), which
represents Holding Register 40,136. This register will be preset to hex
value 039E (decimal 926).

Interpreting the Response
The normal response to a request to preset a single register is to re-
transmit the query message after the register has been altered. Based on
the above example, the response would be as follows:

Data

Function Register 40,136 Data Data Error

Address Code High Low Check

11 06 00 87 03 9E C1 CRC

Function Code 8—Loopback Test
The Loopback Test permits you to test the communications system. It
does not affect the content of the NetPower DeviceServer. Variations in
the response might indicate a fault in Modbus communications.

Sending a Command (Query)
The information field contains two bytes used to designate a diagnostic
code followed by two bytes used to designate the action to be taken.

Using the Loopback Test also permits you to determine the contents of
the Diagnostic Register and to read the slave’s bus message, bus CRC
error, and bus exception error counters.

For a detailed description of how the Loopback test can be used and a list
of the diagnostic codes, refer to the Modicon Modbus Protocol Reference
Guide.

In the following table, the Loopback Test requests a simple return of the
query message (diagnostic code 0) sent to slave address 17:

B-8

Function Diagnostic Code Data Data Error Check

Address Code High Low Low High

11 08 00 00 A5 37 00 0B

Slave address.
(Hex 11 equals
decimal 17).

Starting high-byte. Starting low-byte. Data to be sent.
Hex 37 equals
decimal 55.

Data to be sent.
Hex A5 equals
decimal 165.

Communication
transmission error
check sum.

Interpreting the Response
Using the previous example, a successful Loopback Test would return
the following results (the same information that was sent).

Function Diagnostic Code Error Check

Address Code High Low Data Data Low High

11 08 00 00 A5 37 00 0B

Slave address. Starting high-byte. Starting low-byte. Data received.Data received. Check sum.

Function Code 16—Preset Multiple Holding Registers
This function permits you to modify the contents of multiple Holding
Registers .

Important
60 Registers maximum.

This function overrides the controller memory protection.

Writing Data to Holding Registers
Holding Registers associated with devices are numbered sequentially
from zero through 199 (0 = register 40001, 1 = register 40002, ..., 199 =
register 40,200).

Unmapped Holding Registers are numbered sequentially from 1000
through 1149 (1000 = register 41,001, 1001 = register 41,002, ...,1149 =
register 41150).

The values are provided in binary up to the maximum capacity of the
controller. Unused high bits must be set to zero.

When used with slave address 0 (Broadcast mode), all slave controllers
load the specified registers with the designated contents.

B-9

For example, the following table shows the values you would use to
write Holding Registers 41,001 to 41,002 (inclusive) at slave address 17:

Data

Function Register# Quantity Byte DataValue DataValue

Address Code High Low High Low Count High Low High Low CRC

11 10 03 E8 00 02 04 01 02 03 04

Checksum.Values to which the registers
will be set (102 hex equals 258
decimal, 304 hex equals 772
decimal).

Number of
data bytes
to follow.

Quantity of
holding registers
to be written.

Starting holding register.
Hex 3E8 (decimal 1000)
represents holding
register 41,001.

Slave
address. (Hex
11 equals
decimal 17).

The Starting Low-Byte Register value is 3E8 (1000 decimal), which
represents Holding Register 41,001; the quantity of registers to write is 2.
Holding Registers 41,001 and 41,002 will be preset to hex value 102
(decimal 258) and 304 (decimal 772) respectively.

Interpreting the Response
The normal response to a preset multiple register command is to
retransmit the address function code, starting register, and quantity of
registers to be loaded. Based on the above example, the response would
be as follows:

Data

Function Register # Quantity Byte

Address Code High Low High Low Count CRC

11 10 03 E8 00 02 04

Interpreting 32-bit Quantities from the NetPower DeviceServer
The NetPower DeviceServer displays certain fields in two 16-bit registers
(Most Significant, Least Significant). For example, the IQ Analyzer IA
field (Ph a current x 100). This is an unsigned 32-bit number within the
IMPACC system and should be interpreted as such.

Unsigned 32-bit Values
Using the IQ Analyzer IA field example, assume the value is 821.26
amps and the IA is sent via Input Registers 30017 and 30018. Register

B-10

30017 contains the Least Significant 16 bits and 30018 contains the Most
Significant 16 bits.

Register Address Contents (hex) Contents (dec)

30017 40CE16 1659010

30018 000116 110

These two registers must be interpreted as the unsigned 32-bit number:

000140CE16 = 8212610.

This may mean that the Modbus Master will have to manipulate the
contents of two 16-bit registers as follows:

((Register 30018*6553610)+ Register 30017)
=((1*6553610)+1659010)
=821610

And then applying the IA scale factor (0.01) and display IA as:

= 8212610 /10010
= 821.26

Signed 32-bit Values
Using the IQ Analyzer WATTSDEMAND (Average Real Power) field
example, assume the value is -9625423 watts and the WATTSDEMAND
is sent via Input Registers 30102 and 30103. Register 30102 contains the
Least Significant 16 bits, 30103 contains the Most Significant 16 bits.

Register Address Contents(hex) Contents(dec)

30102 20B116 836910

30103 FF6D16 -14710

These two registers must be interpreted as a signed 32-bit number:

FF6D20B116 = -962542310 .

This may mean that the Modbus Master will have to display
WATTSDEMAND using logic similar to the following:

if (Register 30103 LESS THAN 0)
{

//Take 2’s Complement of Register Pair.
Register 30103 = NOT (Register 30103)
Register 30102 = NOT (Register 30102)
if (Register 30102 EQUALS 65535)
{

Register 30102 = 0
Register 30103 = Register 30103 + 1

}
else
{

B-11

Register 30102 = Register 30102 + 1
}
{(Register 30103 * 6553610) + Register 30102)

= ((14610 * 6553610) + 5716710

= 96542310
//Display as unsigned 32-bit value (above but with minus sign to

denote negative

=96542310
}
else

(Register 30203* 6553610) + Register 30102)
//Display as unsigned 32-bit value (above but with plus

sign to denote positive.

B-12

