Instructions for Installation, Operation, and Maintenance of Cutler-Hammer IQ 200 Electrical Distribution System Meter

Table of Contents
SECTION 1: INTRODUCTION 1
1.1 PRELIMINARY COMMENTS AND SAFETY PRECAUTIONS 1
1.1.1 Warranty and Liability Information 1
1.1.2 Safety Precautions 1
1.1.3 Factory Correspondence. 2
1.2 PRODUCT OVERVIEW 2
SECTION 2: HARDWARE DESCRIPTION 4
2.1 GENERAL 4
2.1.1 IQ 200 Display Module 4
2.1.2 IQ 200 Base Module 4
2.1.3 Installation 4
2.2 OPERATOR PANEL 5
2.3 BASE MODULE REAR ACCESS AREA 5
2.3.1 Current and Voltage Inputs 6
2.3.2 Power Supply Input. 6
2.3.3 Local Display Connection 6
2.3.4 $\mathrm{INCOM}^{\text {™ }}$ Communications 6
2.4 EXTERNAL HARDWARE 7
2.4.1 Current Transformers 7
2.4.2 Potential Transformers 7
2.4.3 External Fuses 7
2.5 PRODUCT SPECIFICATIONS 7
2.5.1 Regulatory/Standards Compliance 8
2.6 ORDERING INFORMATION 11
SECTION 3: INSTALLATION. 12
3.1 INTRODUCTION 12
3.2 PANEL PREPARATION 12
3.2.1 Mounting the IQ 200 Modules as a Single Unit 13
3.2.2 Mounting the IQ 200 Display and Base Modules Separately.. 13
3.3 WIRING 16
3.3.1 Wiring System Current and Voltage. 16
3.3.2 Wiring Diagrams for Various System Configurations 16
3.3.3 $I N C O M ~^{\text {™ }}$ Network Communications 22
3.3.4 KYZ Pulse Initiator 22
SECTION 4: OPERATION 25
4.1 GENERAL 25
4.2 BUTTONS 25
4.3 CONTRAST 26
4.4 DISPLAYED SIGN CONVENTIONS 26
4.5 USING THE OPERATOR PANEL 27
4.6 SYSTEM DATA DISPLAY MODE 28
4.6.1 3 Wire System and 4 Wire System 28
4.7 PHASE DATA DISPLAY MODE 28
4.7.1 3 Wire System 28
4.7.2 4 Wire System 29
4.8 MIN/MAX DATA DISPLAY MODE 29
4.8.1 3 Wire System 29
4.8.2 4 Wire System 30
4.9 VIEW SETPOINTS (3 and 4 wire systems) 31
4.9.1 View All 31
4.9.2 Password Setup 31
4.9.3 INCOM $^{\text {™ }}$ Setup 32
4.9.4 System Frequency 32
4.9.5 Wiring Configuration 32
4.9.6 CT Ratio 33
4.9.7 PT Ratio 33
4.9.8 Demand Window 33
4.9.9 KYZ Setup 33
4.9.10 Exit 33
4.10 Edit Setpoints (3 and 4 wire systems) 34
4.10.1 Edit All 34
4.10.2 Password Setup 34
4.10.3 INCOM Setup 35
4.10.4 System Frequency 36
4.10.5 Wiring Configuration 36
4.10.6 CT Ratio 36
4.10.7 PT Ratio 37
4.10.8 Demand Window 38
4.10.9 KYZ Setup 38
4.10.10 Exit. 39
4.11 RESET VALUES 39
4.12 CONTRAST ADJUST 40
4.13 DIAGNOSTICS 40
4.14 EXIT MENU 40
SECTION 5: TROUBLESHOOTING AND MAINTENANCE 41
5.1 GENERAL 41
5.1.1 Level of Repair 41
5.1.2 Maintenance and Care 41
5.2 REMOVAL AND REPLACEMENT 41
5.2.1 General Safety Precautions 42
5.2.2 IQ 200 Display Module 42
5.2.3 IQ 200 Base Module 42
5.3 GENERAL TROUBLESHOOTING PROCEDURES 43
5.4 TECHNICAL ASSISTANCE 44
5.5 RETURN PROCEDURE 44
List of Figures
Figure 2.1 IQ 200 Display Module 4
Figure 2.2 IQ 200 Base Module 4
Figure 2.3 Operator Panel 5
Figure 2.4 Base Module (Rear Face View) 5
Figure 3.1 Securing the IQ 200 Display Module 13
Figure 3.2 Mounting the IQ 200 Base Module to the IQ 200 Display Module. 13
Figure 3.3 Typical Mounting Options for Mounting the IQ 200 Base Module 14
Figure 3.4 Mounting Hole Pattern for the IQ 200 Base Module 15
Figure 3.53 Phase 3 Wire Configuration (Up to 600 Volts) 17
Figure 3.6 3 Phase 3 Wire Configuration (Above 600 Volts) 17
Figure 3.73 Phase 3 Wire, 2 CT Configuration (Up to 600 Volts) 18
Figure: 3.83 Phase 3 Wire, 2CT Configuration (Above 600 Volts) 18
Figure: 3.93 Phase 4 Wire Configuration (Up to 600 Volts) 19
Figure 3.103 Phase 4 Wire Configuration (Above 600 Volts) 19
Figure 3.11 3 Phase 3 Wire Configuration (Above 600 Volts) Line Powered 20
Figure 3.12 3 Phase 4 Wire Configuration (Up to 600 Volts) Line Powered 20
Figure 3.13 Single Phase 3 Wire Configuration (Up to 600 Volts) 21
Figure 3.14 Single Phase 2 Wire Configuration (Up to 600 Volts) 21
Figure 3.15 Securing INCOM ${ }^{\text {™ }}$ Cable to Shroud 22
Figure 3.16 2-Terminal (K-Y) Configuration 24
Figure 3.173 Terminal (K-Y-Z) Configuration 24
Figure 4.1 System Power Values Relationships 27
Figure 4.2 Main Menu 27
Figure 4.3 System Display 3 and 4 Wire Systems. 28
Figure 4.4 Phase Display 3 Wire Systems 29
Figure 4.5 Phase Display 4 Wire Systems 29
Figure 4.6 Min/Max Data Display, 3 Wire System 30
Figure 4.7 Min/Max Data Display, 4 Wire System 31
Figure 4.8 No Password Required 32
Figure 4.9 Password Required. 32
TD 17558Page v
Figure 4.10 INCOM ${ }^{\text {TM }}$ Setup 32
Figure 4.11 System Frequency. 32
Figure 4.12 Wiring Configuration 32
Figure 4.13 CT Ratio 33
Figure 4.14 PT Ratio 33
Figure 4.15 Demand Window 33
Figure 4.16 KYZ Setup 33
Figure 4.17 Password Entry 34
Figure 4.18 Password Setup 34
Figure 4.19 INCOM ${ }^{\text {TM }}$ Setup 35
Figure 4.20 System Frequency 36
Figure 4.21 Wiring Configuration 36
Figure 4.22 CT Ratio 36
Figure 4.23 PT Ratio 37
Figure 4.24 Demand Window 38
Figure 4.25 KYZ Setup 38
Figure 4.26 Reset Values 39
Figure 4.27 Reset Energy 39
Figure 4.28 Reset Amps Min/Max 39
Figure 4.29 Contrast Adjust 40

List of Tables

Table 2.1 IQ 200 Safety Specifications ... 8
Table 2.2 IQ 200 Operating Specifications ... 9
Table 2.3 IQ 200 Metering Accuracy... 10
Table 2.4 IQ 200 Measurement Ranges.. 10
Table 2.5 IQ 200 Physical Characteristics .. 11
Table 2.6 IQ 200 Ordering Information... 11

Cutler-Hammer

IQ 200 Electrical Distribution System Meter Installation, Operation, and Maintenance SECTION 1: INTRODUCTION

1.1 PRELIMINARY COMMENTS AND SAFETY PRECAUTIONS

This Technical Document covers most aspects of installation, operation, and unitlevel maintenance of the IQ 200. This document is a guide only for authorized and qualified personnel who select and use the IQ 200. Please refer to the specific WARNING and CAUTION in this section before proceeding. If you require further information regarding a particular installation, application, or maintenance activity, contact your Cutler-Hammer representative.

1.1.1 Warranty and Liability Information

No warranties, expressed or implied, including warranties of fitness for a particular purpose of merchantability, or warranties arising from course of dealing or usage of trade are made regarding this information, recommendations, and descriptions contained herein. In no event will Cutler-Hammer be responsible to the purchaser or user in contract, in tort (including negligence), strict liability, or otherwise for any special, indirect, incidental, or consequential damage or loss whatsoever, including but not limited to damage or loss of use of equipment plant or power system, cost of capital, loss of power, additional expenses in the use of existing power facilities, or claims against the purchaser or user by its customers resulting from the use of the information and descriptions contained herein.

1.1.2 Safety Precautions

All safety codes, safety standards, and/or regulations must be strictly observed in the installation, operation, and maintenance of this device.
$!$

WARNING

THE WARNINGS AND CAUTIONS INCLUDED AS PART OF THE PROCEDURAL STEPS IN THIS DOCUMENT ARE FOR PERSONNEL SAFETY AND PROTECTION OF EQUIPMENT FROM DAMAGE. AN EXAMPLE OF A TYPICAL WARNING LABEL IS SHOWN ABOVE IN REVERSE TYPE TO FAMILIARIZE PERSONNEL WITH THE STYLE OF PRESENTATION. THIS WILL HELP TO ENSURE THAT PERSONNEL ARE ALERT TO WARNINGS WHICH MAY APPEAR THROUGHOUT THE DOCUMENT. IN ADDITION, CAUTIONS ARE ALL UPPER CASE AND BOLDFACED AS SHOWN ON THE NEXT PAGE.

CAUTION

COMPLETELY READ AND UNDERSTAND THE MATERIAL PRESENTED IN THIS DOCUMENT BEFORE ATTEMPTING TO INSTALL, OPERATE OR USE THE EQUIPMENT. IN ADDITION, ONLY QUALIFIED PERSONS SHOULD BE PERMITTED TO PERFORM ANY WORK ASSOCIATED WITH THE EQUIPMENT. ANY WIRING INSTRUCTIONS PRESENTED IN THIS DOCUMENT MUST BE FOLLOWED PRECISELY. FAILURE TO DO SO COULD CAUSE PERMANENT EQUIPMENT DAMAGE.

1.1.3 Factory Correspondence

For additional information, technical assistance, or referral to a local authorized distributor, contact Power Management Application Support (PMAS) at 1-800-809-2772, option 1.

1.2 PRODUCT OVERVIEW

The IQ 200 is a microprocessor based monitoring device that provides single phase, 2 or 3 wire, and 3 phase, 3 or 4 wire electrical metering designed to replace numerous individual meters and recorders. It is compact, consisting of a panelmounted Display Module and a Base Module that can be attached to the Display Module or mounted remotely. It communicates information over the Cutler-Hammer IMPACC network. The IQ 200 is password protected, menu driven, and displays a variety of user-selected electrical system values and provides control over certain measurement and data output functions. The IQ 200 Base Module communicates with the IQ 200 Display Module, providing access to view and reset system, phase, and min/max values, and providing for viewing and editing of setpoints.

The IQ 200 monitors system and phase values in the following typical system wiring configurations.

| $\begin{array}{l}\text { 3 Phase } \\ \text { 4 Wire }\end{array}$ | $\begin{array}{l}\text { 3 Phase } \\ \text { 3 Wire }\end{array}$ | $\begin{array}{l}\text { 3 Phase } \\ \text { 3 or 4 Wire }\end{array}$ | |
| :--- | :--- | :--- | :--- | \(\left.\begin{array}{l}Single Phase

2 or 3 Wire\end{array}\right]\)

The IQ200 displays the following values:

Values Displayed		
System	Each Phase	Minimum/Maximum
Power	Current	Currents
Frequency	Current Demand	Line to Line Voltages
Apparent Power Factor	Current Peak Demand	Line to Neutral Voltages
Displacement Power Factor	Line to Line Voltage	System Power (W, vars, VA)
Watt Hours	Line to Neutral Voltage	System Frequency
var Hours	Watts	System Apparent Power Factor
VA Hours	vars	System Displacement Power Factor
Demand (W, var, VA)	VA	
Peak Demand (W, var, VA)	Apparent Power Factor	
	Displacement Power	
Factor		

The IQ 200 provides the following data outputs:

- $\operatorname{INCOM}^{\text {TM }}$ communications to provide information to the network master device (see section 4.9.3 and 4.10.3 for details)
- KYZ Pulse Output proportional to the energy consumed by the system being monitored (see section 4.9.9 and 4.10.9 for details)

SECTION 2: HARDWARE DESCRIPTION

2.1 GENERAL

This section describes the IQ 200 hardware, its functions and nomenclature, and lists the IQ 200 specifications. The IQ 200 consists of two components, the Display Module, figure 2.1, and the Base Module, figure 2.2. Do not attempt to disassemble or open the case of either the IQ 200 Display Module or the IQ 200 Base Module. The units contain no user-serviceable components.

Figure 2.1 IQ 200 Display Module

Figure 2.2 IQ 200 Base Module

2.1.1 IQ 200 Display Module

The Display Module screen presents system values and functions. The Menu, up/down Scroll, and Enter buttons allow the operator to view, change, and reset system parameters. The port for connecting to the IQ 200 Base Module is located on the bottom side of the IQ 200 Display Module.

2.1.2 IQ 200 Base Module

The IQ 200 Base Module measures system values and provides metering data. Current and voltage input terminals, power supply terminals, the display port, the KYZ pulse initiator port, the INCOM ${ }^{\text {™ }}$ communications port, and an INCOM ${ }^{\text {TM }}$ transmit indicator LED are all located on the rear face of the IQ 200 Base Module.

2.1.3 Installation

The IQ 200 is usually mounted inside an environmentally suitable electrical switchgear enclosure. The IQ 200 Display Unit and the IQ 200 Base Module can be mounted together or separately in a variety of ways, described fully in SECTION 3: INSTALLATION.

2.2 OPERATOR PANEL

The Operator Panel is the front face of the IQ 200 Display Module. It is usually installed so that it is visible and accessible from the outside of the panel or door into which it is mounted.

The Menu, up/down Scroll, and Enter buttons allow the operator to view, change, and reset various system parameters:

Figure 2.3 Operator Panel

- Display measured system, phase, and min/max values
- View and edit all or individual setpoints
- Password
- $\operatorname{INCOM}^{\text {TM }}$ network address and baud rate
- System frequency
- Wiring configuration
- CT and PT ratios
- Demand window
- Energy tracking (KYZ pulse output)
- View and reset energy, peak demands, and all or individual minimum and maximum values.
- Change the display contrast for best viewing

The Operator Panel is an integral part of the IQ 200 Display Module. Do not attempt to remove it from the IQ 200 Display Module.

2.3 BASE MODULE REAR ACCESS AREA

All wiring connections are made from the rear face of the chassis, shown in figure 2.4 below.

Figure 2.4 Base Module (Rear Face View)

Note: For sections 2.3.1 through 2.3.4 refer to figure 2.4.

2.3.1 Current and Voltage Inputs

The voltage terminal block is located at the bottom rear of the chassis. It has four terminals for wiring the phase voltages and the neutral, as shown below. The neutral terminal must be connected to system neutral or ground depending on system configuration. All connections must be made in accordance with national and local requirements and codes.

Phase	Voltage Terminal
A	VA
B	VB
C	VC
Neutral	NEU

The current transformer terminal block is located at the top rear of the chassis. It has six terminals, grouped into three pairs: one pair for each phase current transformer, as shown below.

Phase	CT Terminal Pair
A	H1A, H2A
B	H1B, H2B
C	H1C, H2C

2.3.2 Power Supply Input

The IQ 200 power supply input is connected to the PS1 and PS2 terminals on the lower right rear of the Base Module chassis. The IQ 200 requires 90 to 600 VAC or 48 to 250 VDC , and may be wired directly to the monitored system if the voltage is within range.

2.3.3 Local Display Connection

The supplied Category 5 cable connects to the DISPLAY port located on the middle right rear of the chassis and to the port on the IQ 200 Display Module. Do not route the Category 5 cable in the same enclosure or cable tray as 600 V system wiring.

2.3.4 INCOM ${ }^{\text {M }}$ Communications

The IQ 200 Electrical Distribution System Meter is an IMPACC (Integrated Monitoring, Protection, And Control Communications) compatible device. As such, it can be remotely monitored and functionally modified.

IMPACC is a noise-immune communications system that permits communication to and from a master computer and the IQ 200 or other devices using a high frequency carrier signal transmitted over a properly terminated, shielded twisted pair cable.

Consult TD17513 IMPACC Wiring Specification Base Rules for detailed information on proper installation and termination of network cable.

The following functions can be performed remotely when the IQ 200 is connected to an external IMPACC compatible network:

- Display measured system, phase, and min/max values
- View and edit setpoints
- System frequency
- Wiring configuration
- CT and PT ratios
- Demand window
- Energy tracking (KYZ pulse output)
- View and reset energy, peak demands, and all or individual minimum and maximum values

2.4 EXTERNAL HARDWARE

2.4.1 Current Transformers

The IQ 200 requires at least two user-supplied external instrument class current transformers with 5 amp secondaries. These transformers must be connected to the current transformer terminals on the IQ 200 Base Module as detailed in section 3.3.

2.4.2 Potential Transformers

The IQ 200 requires user-supplied potential transformers if line voltage is above 600 volts. These transformers must be connected to the voltage terminals on the IQ 200 Base Module as detailed in section 3.3.

2.4.3 External Fuses

It is recommended that user-supplied fuses be installed as described below to protect the IQ 200 and related components from damage.

2.4.3.1 IQ 200 Power Supply

External fuses should be installed in the IQ 200 power supply lines, near the IQ 200 Base Module. The fuses should be $1 / 2$ Amp, 600 volt, BUSS type KTK-R-1/2 Fast Acting or equivalent.

2.4.3.2 Potential Transformers

External fuses should be installed in the potential transformer lines as specified in the National Electric Code for the specific application.

2.5 PRODUCT SPECIFICATIONS

Refer to tables 2.1 to 2.5 for all IQ 200 specifications.

2.5.1 Regulatory/Standards Compliance

The IQ 200 meets UL, CUL, and CE requirements.

Table 2.1 IQ 200 Safety Specifications

Safety	
IEC 1010-1 (1990) Incl. Amend 1\&2 (1995) EN61010-1 (1993) CSA C22.2 \#1010.1 (1992) UL3111	
EMC	
Emissions FCC Part 15 Class A CISPR 11 (1990) / EN55011 (1991) Group 1	ass A
Immunity Electrostatic Discharge EN61000-4-2 (1995) / EN50082-2 (1995)	4 kV CD 8kV AD
Electrical Fast Transient EN61000-4-4 (1995) / EN50082-2 (1995)	2kV PL 2kV SL
Radiated Immunity EN61000-4-3 (1997) / EN50082-2 (1995)	$10 \mathrm{~V} / \mathrm{m}$
Conducted Immunity EN61000-4-6 (1996) / EN50082-2 (1995)	10Vrms
Power Frequency Magnetic Field EN61000-4-8 (1995)	$30 \mathrm{~A} / \mathrm{m}$

Table 2.2 IQ 200 Operating Specifications

Control Power		
Input Range	$90-600 \mathrm{VAC} \pm 10 \%$	$48-250 \mathrm{VDC} \pm 10 \%$
Frequency Range	$50 / 60 \mathrm{~Hz}$	-
Burden	180 mA	7 W
Environment	Indoor use only	
Maximum Operating Altitude	3000 meters	
Operating Temperature	-20° to $50^{\circ} \mathrm{C}$	
Base Unit	0° to $50^{\circ} \mathrm{C}$	
Display Module	-30° to $85^{\circ} \mathrm{C}$	
Storage Temperature	-20° to $60^{\circ} \mathrm{C}$	
Base Unit	80% for temperatures up to $\left.31^{\circ} \mathrm{C}\right)$	
Display Module	decreasing linearly to 50% at $50^{\circ} \mathrm{C}$	
Maximum Relative Humidity:	decreasing linearly to 50% at $50^{\circ} \mathrm{C}$	
Base Unit	5 amp nominal, 10 amp maximum	
Display Module	0.01Ω	
Current Inputs	0.25 VA	
Input Impedance	150 Amps ac 1 second	
Burden	0.5% to 200% of nominal full scale	
Overload Withstand	90 to 600 volts nominal $\pm 10 \%$	
Accuracy Range	$2 \mathrm{M} \Omega$	
Voltage Inputs	660 VAC continuous	
Input Impedance	1200 Baud ASK	
Overload Withstand	9600 Baud FSK	
Communication Speeds		
KYZ	$240 \mathrm{VAC} / 300$ VDC	
Input Voltage	96 mA	
Maximum Current Rating	3750 V rms	
Input/Output Isolation Voltage	0 VERVOLTAGE CATEGORY IIII	
Transient Overvoltage Category	$2(I \mathrm{EC} 664)$	
Pollution Degree		

Table 2.3 IQ 200 Metering Accuracy

Parameter	Accuracy
Current (<5 amps)	$\pm .5 \%$ of Full Scale
Current (>5 amps)	$\pm .5 \%$ of Reading
Voltage, line-to-line	$\pm .5 \%$ of Full Scale
Voltage, line-to-neutral	$\pm .5 \%$ of Full Scale
Watts (< 5 amps$)$	$\pm 1 \%$ of Full Scale
Watts (>5 amps)	$\pm 1 \%$ of Reading
vars (< 5 amps$)$	$\pm 1 \%$ of Full Scale
vars (>5 amps)	$\pm 1 \%$ of Reading
VA (< 5 amps$)$	$\pm 1 \%$ of Full Scale
VA (>5 amps)	$\pm 1 \%$ of Reading
Power Factor	$\pm 2 \%$ of Full Scale
Frequency	$\pm 0.1 \mathrm{~Hz}$
Energy	$\pm 1 \%$

Table 2.4 IQ 200 Measurement Ranges

Parameter	Max Data Range
Current	$0 \ldots 65,535 \mathrm{amps}$
Voltage	$0 \ldots 2,097,120 \mathrm{volts}$
Power	
Watts	$-1,073,709,057 \ldots+1,073,709,056$ Watts
vars	$-1,073,709,057 \ldots+1,073,709,056 \mathrm{vars}$
VA	$0 \ldots 2,147,450,880 \mathrm{VA}$
Energy	
Fwd / Rev Wh	$0 \ldots 999,999,999 \mathrm{kWh}$
Fwd / Rev varh	$0 \ldots 999,999,999 \mathrm{kvarh}$
Net Wh	$-999,999,999 \ldots+999,999,999 \mathrm{kWh}$
Net varh	$-999,999,999 \ldots+999,999,999 \mathrm{kvarh}$
Net VAh	$0 \ldots 999,999,999 \mathrm{kVAh}$
Power Factor	$-1.00 \ldots+1.00$
Frequency	$0 \ldots 255.996 \mathrm{~Hz}$

Table 2.5 IQ 200 Physical Characteristics

Dimension	Display Module	Base Module
Length	$1.84 \mathrm{in}$. . 11	$6.74 \mathrm{in}$. .

${ }^{(1)}$ includes 0.50 in . bezel and 0.37 in . ground lug terminal ${ }^{(2)}$ includes 0.06 in . front face mounting plate and 0.62 in. terminal block ${ }^{(3)}$ centered on front face mounting plate

2.6 ORDERING INFORMATION

When ordering IQ 200 components, please refer to the Catalog Number listed in table 2.6.

Table 2.6 IQ 200 Ordering Information

Description	Catalog Number
IQ 200 Base Module	IQ220TRAN
IQ 200 Display Module	IQ200D
IQ 200 Base Module and IQ 200 Display Module	IQ220
3 foot long Category 5 Cable	IQ23CABLE
6 foot long Category 5 Cable	IQ26CABLE
10 foot long Category Cable	IQ210CABLE

Contents: Base Unit Package
(1) IQ 200 Base Unit
(1) DIN Rail Clip
(4) $1 / 2 ? \# 10(10-32)$ screws
(1) Phoenix Contact

Cable Housing
(1) 3?DIN Rail
(1) L-Bracket
(4) 1 14? \#8 ($8-32$) Screws

Display Unit Package
(1) IQ 200 Display Unit
(1) 1' shielded Category 5 patch cable
(1) Gasket
(4) Panel Mount Jacks
(4) Thumbscrews

SECTION 3: INSTALLATION

3.1 INTRODUCTION

The IQ 200 is designed to be installed, operated, and maintained by adequately trained personnel. These instructions do not cover all details, variations or combinations of the equipment, its storage, delivery, installation, checkout, safe operation, or maintenance. Care must be exercised to comply with local, state, and national regulations, as well as with industry standard safety practices for this class of equipment. Refer to figure 3.5 through 3.14 for wiring details.

A THREE PHASE SWITCH OR CIRCUIT BREAKER SHOULD BE IN CLOSE PROXIMITY TO THE IQ 200 MOUNTING LOCATION AND MARKED AS THE DISCONNECTING DEVICE FOR THE EQUIPMENT.

 WARNING
TURN OFF AND LOCK OUT POWER SUPPLYING THE PANELBOARD OR SWITCHGEAR IN WHICH THE IQ 200 IS BEING INSTALLED. INJURY TO PERSONNEL OR DAMAGE TO EQUIPMENT CAN RESULT.

3.2 PANEL PREPARATION

It is recommended that the IQ 200 be mounted in an electrical switchgear enclosure that is suitable for its environment. The IQ 200 Display and IQ 200 Base Modules may be mounted together or separately. The IQ 200 is designed with flexibility in mind. While it is recommended that the IQ 200 Display Module be door- or panelmounted, the Base Module may be attached to the IQ 200 Display Module; mounted remotely using the supplied DIN rail and clip, or L-bracket; or mounted directly to panel or floor. For floor or panel mounting, a \#10 (10-32) or \#12 (12-28) screw is recommended.

In all instances where the IQ 200 Base Module is mounted remotely, the IQ 200 Display Module Chassis must be connected to earth ground.

Before installing the IQ 200, refer to dimensions listed in table 2.5 and allow adequate room for wiring of and access to the IQ 200 Base Module terminals and connectors.

3.2.1 Mounting the IQ 200 Modules as a Single Unit

Using the screws provided, attach the supplied DIN rail to the back of the IQ 200
Display. Use the screws provided with the IQ 200 Base Module to attach the supplied DIN clip to the front face of the IQ 200 Base Module.

Cut a $1 / 4 \mathrm{DIN}(92 \mathrm{~mm} \times 92 \mathrm{~mm})$ access cutout in the switchgear door or other panel where the IQ 200 is to be mounted as shown in figure 3.1. Install the IQ 200 Display Module as shown in figure 3.1, following these steps:

- Install the supplied gasket when using in NEMA 12 applications.
- Slide the supplied gasket over the rear of the IQ 200 Display Module until it is flush with the rear of the outer bezel.
- Insert the IQ 200 Display Module with gasket installed into the cutout.
- Slide the 4 supplied locking bars into the 4 slots in the top, bottom, and sides at the rear of the IQ 200 Display Module

Figure 3.1 Securing the IQ 200 Display Module

- Insert and tighten the supplied thumbscrews to secure the IQ 200 Display Module in place.
- Connect the IQ 200 Base Module to the IQ 200 Display Module using the DIN rail and clip, as shown in figure 3.2.

Connect the IQ 200 Display Module to the IQ 200 Base Module by inserting one end of the 1 foot long Category 5 cable into the port on the IQ 200 Display Module, and the other end into the DISPLAY port on the IQ 200 Base Module. Do not route the Category 5 cable in the same enclosure or cable tray as 600 V system wiring.

Figure 3.2 Mounting the IQ 200 Base Module to the IQ 200 Display Module

Proceed to section 3.3, Wiring.

3.2.2 Mounting the IQ 200 Display and Base Modules Separately

In all instances where the IQ 200 Base Module is mounted remotely, the IQ 200
Display Module Chassis must be connected to earth ground.

Display Module Cut a $1 / 4$ DIN ($92 \mathrm{~mm} \times 92 \mathrm{~mm}$) access cutout in the switchgear door or other panel where the IQ 200 is to be mounted as shown in figure 3.1. Install the IQ 200 Display Module as shown in figure 3.1, followin g these steps:

- Install the supplied gasket when using in NEMA 12 applications.
- Slide the supplied gasket over the rear of the IQ 200 Display Module until it is flush with the rear of the outer bezel.
- Insert the IQ 200 Display Module with gasket installed into the cutout.
- Slide the 4 supplied locking bars into the 4 slots in the top, bottom, and sides at the rear of the IQ 200 Display Module
- Insert and tighten the supplied thumbscrews to secure the IQ 200 Display Module in place.

Connect the grounding terminal on the rear face of the IQ 200 Display Module to earth ground.

Base Module Select a location for the IQ 200 Base Module. Depending on the location, use the mounting holes in the flange on the front face of the IQ 200 Base Module, the supplied L-bracket, or the DIN rail/DIN clip set to secure the IQ 200 Base Module in the desired location and orientation. Typical mounting options are shown in figure 3.3. The hole drilling pattern for mounting the IQ 200 Base Module to floor, wall, or other surface is shown in figure 3.4.

Figure 3.3 Typical Mounting Options for Mounting the IQ 200 Base Module

Connect the IQ 200 Base Module to earth ground using the grounding terminal on the rear face.

Route a Category 5 cable from the IQ 200 Base Module to the IQ 200 Display Module. Do not route the Category 5 cable in the same enclosure or cable tray as 600 V system wiring.

Figure 3.4 Mounting Hole Pattern for the IQ 200 Base Module
Connect the IQ 200 Display Module to the IQ 200 Base Module by inserting one end of a Category 5 cable into the port on the IQ 200 Display Module, and the other end into the DISPLAY port on the IQ 200 Base Module.

Proceed to section 3.3 Wiring.

3.3 WIRING

The IQ 200 requires connection to system currents and voltages. If mounted separately, the cases of IQ 200 Display Module and the IQ 200 Base Module case must be connected to earth ground. If mounted together as one unit, the case of the IQ 200 Base Module must be connected to earth ground.

Additionally, the IQ 200 may require connection to an IMPACC network and/or an external pulse counter. The steps for completing each type of wiring are described in the following sections.

CAUTION

ALL WIRING MUST CONFORM TO NATIONAL AND LOCAL CODES. SUFFICIENT ROOM MUST BE PROVIDED FOR ROUTING OF ALL POWER CABLES. ALL SIGNAL CABLES MUST BE ROUTED SEPARATELY FROM POWER CABLES. THE CATEGORY 5 CABLE CONNECTING THE IQ200 DISPLAY MODULE AND THE IQ 200 BASE MODULE IS RATED AT 300V. THIS CABLE MUST NOT BE ROUTED IN THE SAME WIRING CHANNEL AS THE SYSTEM POWER.

3.3.1 Wiring System Current and Voltage

The IQ 200 must be connected to sources of current and voltage for each phase that is to be monitored. Current transformers having a 5 amp secondary provide the phase current measurement. Phase voltages under 600 V may be measured directly by the IQ 200. Phase voltages over 600V must be measured using potential transformers.

3.3.2 Wiring Diagrams for Various System Configurations

Recommended IQ 200 wiring diagrams for current and potential transformers are shown below in figures 3.5 through 3.14 . It is the user's responsibility to determine which wiring diagram applies and to specify and install all current transformers, potential transformers, fuses, and other components.

Figure 3.5 3 Phase 3 Wire Configuration (Up to 600 Volts)

Figure 3.63 Phase 3 Wire Configuration (Above 600 Volts)

Figure 3.73 Phase 3 Wire, 2 CT Configuration (Up to 600 Volts)

Figure: 3.83 Phase 3 Wire, 2CT Configuration (Above 600 Volts)

Figure: 3.93 Phase 4 Wire Configuration (Up to 600 Volts)

Figure 3.10 3 Phase 4 Wire Configuration (Above 600 Volts)

Figure 3.113 Phase 3 Wire Configuration (Above 600 Volts) Line Powered

Figure 3.12 3 Phase 4 Wire Configuration (Up to 600 Volts) Line Powered

Figure 3.13 Single Phase 3 Wire Configuration (Up to 600 Volts)

Figure 3.14 Single Phase 2 Wire Configuration (Up to 600 Volts)

3.3.3 INCOM ${ }^{\text {TM }}$ Network Communications

Note: To satsify IMPACC Wiring Specifications use only Belden 9463 OR 3072F, or Culter-Hammer IMPCABLE shielded twisted pair cable or equivalent, according to system requirements. SEE TD17513, IMPACC WIRING SPECIFICATIONS BASE RULES for more detailed information.

Connect the IQ200 to the IMPACC network by connecting the twisted pair communication cable to the INCOM ${ }^{\text {TM }}$ port located on the rear face of the IQ 200 Base Module. The polarity of the twisted pair is not important.

Tie the communication cable shield to ground only once at the INCOM $^{\top M}$ master device. If there are more that one remote INCOM ${ }^{\top M}$ compatible devices (such as the IQ 200) cabled to the master device, tie the communication cable shields together but do not connect to ground.

Care must be taken in stripping wire due to close proximity of terminals.
CAUTION

PREPARE THE CABLE FOR ATTACHMENT TO THE INCOM ${ }^{\text {TM }}$ JACK TO AVOID SHORTING CABLE SHEILD TO POWER INPUT TERMINALS.

Carefully strip the end of the communication wire as described in TD 17513. Install the INCOM ${ }^{\text {TM }}$ jack onto the prepared cable. Place the cable and jack assembly into the recess in the side of the shroud component of the supplied Phoenix Contact Cable Housing that includes a supplied wire tie as shown in figure 3.15. Ensure that the supplied wire tie passes through the holes in the shroud so the ends of the tie flank the cable, as shown in figure 3.15. Tighten the wire tie to

3.15. Securing INCOM ${ }^{\text {™ }}$ Cable to Shroud secure the cable to the shroud.

3.3.4 KYZ Pulse Initiator

The KYZ Pulse Initiator output can be wired to a 2 -wire ($K-Y$ terminals) or 3 wire ($K-Y-Z$ terminals) pulse receiver. These terminal configurations and the resulting pulse trains are shown in figures 3.15 and 3.16. The energy represented by each pulse can be specified by the user as: apparent (VAh); forward or reverse real
$(\pm$ Wh); or leading or lagging reactive (\pm varh). The procedure for specifying the energy per pulse is described in section 4.10.9.

Each pulse that arrives at the pulse counter indicates that the specified energy has been consumed by the monitored system. The frequency and spacing of these pulses represent the energy consumption pattern of the monitored system.
Because the energy represented corresponds to the energy at the secondary winding of the PTs and CTs, the CT and PT ratios must be taken into account when specifying the energy per pulse value. An example of how to specify the energy per pulse value is given below.

Example:

System Configuration
$C T=1400: 5$
PT $=2: 1$
Desired value to monitor
Watt-hours
System parameters
Assume the IQ 200 is monitoring a constant system power of 16,800 Watts.
Step 1: Calculate the $C T$ and $P T$ ratios
$C T$ ratio $=1400 / 5=280$
PT ratio $=2 / 1=2$
Step 2: Calculate the power at the secondary of the CTs and PTs
power at secondaries $=16,800$ Watts $/($ CT ratio \times PT ratio $)$
power at secondaries $=16,800$ Watts $/(280 \times 2)$
power at secondaries $=16,800$ Watts $/ 560$
power at secondaries $=30$ Watts (or 30 Watt-hours in 1 hour)
Step 3: Specify the energy per pulse as desired
Specify secondary energy per pulse = 1 Watt-hour per pulse;
then, each pulse represents system energy of:
$(1400 / 5) \times(2 / 1) \times 1$; or 560 Watt-hours per pulse
or
Specify secondary energy per pulse $=7$ Watt-hours per pulse;
then, each pulse represents system energy of:
(1400/5) $\times(2 / 1) \times 7$; or 3,920 Watt-hours per pulse

Figure 3.16 2-Terminal (K-Y) Configuration

Figure 3.17 3-Terminal ($\mathrm{K}-\mathrm{Y}-\mathrm{Z}$) Configuration

SECTION 4：OPERATION

4．1 GENERAL

The IQ 200 Display Module provides both local display of system values and a method of assigning an IMPACC network address to the IQ 200.

The IQ 200 Display Module allows the user to view information and to specify or change the functions of the IQ 200 system．These items include system and phase data，min／max data，setpoints，and screen contrast．

It also provides a method of assigning a network address and communication baud rate to the IQ 200 should it be networked to an IMPACC master device．

All functions of the IQ 200 are available through menus visible on the screen of the IQ 200 Display Module Operator Panel．Choice of menu and selection of menu options is accomplished by pressing the buttons on the face of the Operator Panel．

The menus provide access to the following values and functions：

```
* 人5O (%)
```



```
*: = =t % & %***
****) ***\\\
*)
氺组\**(with optional password protection)
```



```
#*****星
```


4．2 BUTTONS

There are four buttons on the Operator Panel：Menu，up and down Scroll，and Enter． Their functions are described in the following table．

Button	Function
Menu	Displays the nine different screen menus；displays the immediately preceding screen
Scroll	Navigates the on－screen selection arrow（u ）through menu items and through system values to be displayed
Enter	Confirms the option，value，or screen currently selected

4.3 CONTRAST

The contrast of the screen can be adjusted without entering the $\because \square$ menu by holding in the Enter button while pressing the Scroll up arrow button (to decrease contrast) or the Scroll down arrow button (to increase contrast).

4.4 DISPLAYED SIGN CONVENTIONS

The IQ 200 not only displays system values, but also indicates whether factors are lagging or leading by displaying the following symbols:

Display	Indication
lagging (inductive)	
㐘	leading (capacitive)
龂	lagging net var hours

The IQ 200 is shipped with lagging vars and power factor represented by negative values at the load, conforming to the mathematical sign convention. To change to the power engineer convention, which assumes positive values at the load, the IQ 200 must be connected to an IMPACC ${ }^{\text {TM }}$ network and programmed accordingly. Note that the choice of mathematical or power engineer convention has no effect on the unsigned leading and lagging energy displays, but will reverse the sign of net energy displays.

The following relationships apply:

Convention	Load	var Values	Power Factor Values
Mathematic	inductive	negative	negative (lagging PF)
Mathematic	capacitive	positive	positive (leading PF)
Power Engineer	inductive	positive	positive (lagging PF)
Power Engineer	capacitive	negative	negative (leading PF)

The relationships among system power values are shown schematically in figure 4.1.

Figure 4.1 System Power Values Relationships

4.5 USING THE OPERATOR PANEL

When the IQ 200 is first powered on, the Operator Panel screen displays a brief initialization message identifying the product and version. The screen then displays the $\boldsymbol{*} \boldsymbol{\Delta}$ 人 system data as described in section 4.6 System Data Display Mode.)

Press the Menu button to proceed. The main menu items display four at once, as shown in figure 4.2. Every menu item can be displayed by using the Scroll button arrows. The item currently selected is indicated by the selection arrow to its left.

The presence of additional items is indicated by ì and/or $\hat{\imath}$ at the right edge of the screen.

Figure 4.2 Main Menu

Keep in mind that the values displayed under several menu items depend on whether the system being monitored is 3 or 4 wire, and require that the appropriate configuration be selected under the Ment Menu descriptions cover both 3 and 4 wire systems where appropriate.

Note: the lagging or leading indicator and any signs may be the opposite of that shown in the sample screens.

4.6 SYSTEM DATA DISPLAY MODE

 IQ 200.

Press Menu to display the list of available items.
 The screens shown in figure 4.3 display as the Scroll down arrow is pressed.

4.6.1 3 Wire System and 4 Wire System

Figure 4.3 System Display 3 and 4 Wire Systems

4.7 PHASE DATA DISPLAY MODE

 IQ 200.

Press Menu to display the list of available items.

4.7.1 3 Wire System

The four screens shown in figure 4.4 display as the Scroll down arrow is pressed.

Figure 4.4 Phase Display 3 Wire Systems

4.7.2 4 Wire System

The 10 screens shown in figure 4.5 display as the Scroll down arrow is pressed.

Figure 4.5 Phase Display 4 Wire Systems

4.8 MIN/MAX DATA DISPLAY MODE

4.8.1 3 Wire System

These screens, shown in figure 4.6, display the minimums and maximums of values monitored by the IQ 200.

Press Menu to display the list of available items.

The ten screens shown below display as the Scroll down arrow is pressed.

Figure 4.6 Min/Max Data Display, 3 Wire System

4.8.2 4 Wire System

These screens, shown in figure 4.7, display the minimums and maximums of values monitored by the IQ 200.

Press Menu to display the list of available items.
Position the selection arrow next to $\star=$:
The 10 screens shown below display as the Scroll down arrow is pressed.

Figure 4.7 Min/Max Data Display, 4 Wire System

4.9 VIEW SETPOINTS (3 and 4 wire systems)

This menu selection permits the user to view but not change all of the IQ 200 setpoints and system parameters. To change these values, proceed to section 4.10 Edit Setpoints.
Press Menu to display the list of available items.

The following screens display:

4.9.1 View All

This menu item displays all of the setpoints described in sections 4.9.2 through
4.9.10. To view only one setpoint, follow the steps under the appropriate section.

Selecting the View All menu item displays the 10 screens shown below as the Enter button is pressed.

Position the selection arrow next to **and press Enter.

4.9.2 Password Setup

Position the selection arrow next to
One of two screens will display.

One screen, figure 4.7, indicates that no password is necessary to change the IQ 200 setpoints or system parameters. The other screen, figure 4.8, indicates that a password is required to change setpoints or system parameters.

Password Setup	
Use Password:	

Figure 4.8 No Password Required

Figure 4.9 Password Required

4.9.3 INCOM $^{\text {TM }}$ Setup

Position the selection arrow next to
This screen, shown in figure 4.10, indicates the baud rate at which the IQ 200 will communicate over the INCOM ${ }^{\text {TM }}$ network, and indicates the network address (in hexadecimal) assigned to the IQ 200. The baud rate and the address must be set to the values required by the INCOM ${ }^{\text {TM }}$ network for network communication to occur.

4.9.4 System Frequency

Position the selection arrow next to $\boldsymbol{*} \boldsymbol{\Delta}$ 約米 and press Enter.
This screen, shown in figure 4.11, indicates the frequency selected as the frequency of the system being monitored. The screen will display either $X * \boldsymbol{\star}$ or $\boldsymbol{\star}$. If the frequency displayed is not correct, proceed to section 4.10 Edit Setpoints.

Figure 4.11 System Frequency

4.9.5 Wiring Configuration

This screen, shown in figure 4.12, indicates the wiring configuration selected as the configuration of the system being monitored. The screen
 If the wiring configuration displayed is not correct, proceed to section

Figure 4.12 Wiring Configuration
4.10 Edit Setpoints.

4.9.6 CT Ratio

This screen, shown in figure 4.13, indicates the current transformer ratio selected as the ratio of the current transformers being used with the IQ 200. If the ratio displayed is not correct, proceed to section 4.10 Edit Setpoints.

Figure 4.13 CT Ratio

4.9.7 PT Ratio

This screen, shown in figure 4.14, indicates the potential transformer ratio selected as the ratio of the potential transformers being used with the IQ 200. If the ratio displayed is not correct, proceed to section 4.10 Edit

Figure 4.14 PT Ratio Setpoints.

4.9.8 Demand Window

Position the selection arrow next to **O***: 約 and press Enter.
This screen, shown in figure 4.15, indicates the time window over which demand parameters are measured. If the time displayed is not correct, proceed to section 4.10 Edit Setpoints.

Figure 4.15 Demand Window

4.9.9 KYZ Setup

Position the selection arrow next to
This screen, shown in figure 4.16, indicates the system value which the IQ 200 will monitor, or *** It also indicates the
 demand (consumption) is measured. If the values displayed are not correct, proceed to section 4.10 Edit Setpoints.

Figure 4.16 KYZ Setup

4.9.10 Exit

Pressing Enter when this menu item is selected returns the display to the main menu.

4.10 EDIT SETPOINTS (3 and 4 wire systems)

This menu selection permits the user to change all of the IQ 200 setpoints and system parameters.

Press Menu to display the list of available items.
Position the selection arrow next to
If the Password option has been enabled, the system requests the password via the screen shown in figure 4.17.

To enter the password, press Enter to move the underline to the desired digit. Then use the Scroll up arrow to increase the digit or the Scroll down arrow to decrease the digit. When the desired choice is displayed, press Enter to lock in the selection.

Figure 4.17 Password Entry

If an incorrect password is entered, the message Password Incorrect displays. Press Menu to return to the previous screen showing Edit Setpoints selected. Press Enter to retry entering the password.
If the correct password is entered, or if the Password option is not enabled, the following screens display:

4.10.1 Edit All

This menu item displays all of the setpoints described in sections 4.10.2 through 4.10.10. To edit only one setpoint, follow the steps under the appropriate section. Selecting the Edit All menu item displays the screens shown below as the Scroll down arrow is pressed. (Note: the lagging or leading indicator and any signs may be the opposite of that shown in the sample screens.)

Position the selection arrow next to press Enter.
The following screens display:

4.10.2 Password Setup

Position the selection arrow next to
This screen, shown in figure 4.18, allows the user to specify if a password is required to change the IQ 200 setpoints or system parameters and what the password is or would be if it were in use.

The screen initializes with * selected and the current choice displayed. To

Figure 4.18 Password Setup
specify if a password is required, press either of the Scroll arrows to toggle between y and n. When the desired choice is displayed, press Enter to lock in the selection.

The screen changes to show selected and the first digit of the current password underlined. To change any digit of the password, first select it by pressing Enter to move the underline to the desired digit. Then use the Scroll up arrow to increase the digit or the Scroll down arrow to decrease the digit. When the desired choice is displayed, press Enter to lock in the selection.
 display then returns to the previous screen.
 displays. Press Enter to return to the previous screen, and repeat the attempt.

4.10.3 INCOM Setup

Note: A display is required to configure the $\operatorname{INCOM}{ }^{\top M}$ address.
To set these values on IQ 200 base modules installed without a permanently connected IQ 200 display module, temporarily connect an IQ 200 display module and follow the procedure below.

Position the selection arrow next to 城:
This screen, shown in figure 4.19, displays the baud rate at which the IQ 200 will communicate over the INCOM network, and indicates the network address (in hexadecimal) currently assigned to the IQ 200.
 the current value displayed. To select a baud rate at which the IQ 200 will communicate over the INCOM ${ }^{\text {TM }}$ network, press either of the Scroll arrows to step through the choices 9600 or 1200

WCOM $^{\text {™ }}$	
Setup	
Baud Rate $=$	XXXX
Address $=$	XXX Hex

The screen changes to show network address (in hexadecimal) assigned to the IQ 200 underlined. To change any digit of the address, first select it by pressing Enter to move the underline to the desired digit. Then use the Scroll up arrow to increase the digit or the Scroll down arrow to decrease the digit. When the desired choice is displayed, press Enter to lock in the selection.
 display then returns to the previous screen.

4.10.4 System Frequency

Position the selection arrow next to * $\boldsymbol{\Delta} \mathrm{O}$

R * *
This screen, shown in figure 4.20, displays the electrical system frequency in Hz .

System Frequency
60 Hz

Figure 4.20 System Frequency

This screen initializes with the frequency of the system being monitored selected and displayed. The screen will display either \boldsymbol{x} or

To specify the frequency of the system being monitored, press either of the Scroll arrows to toggle between $\boldsymbol{\lambda}$ and \boldsymbol{x}. When the desired choice is displayed, press Enter to lock in the selection.
 display then returns to the previous screen.

4.10.5 Wiring Configuration

This screen displays the current wiring configuration of the system being monitored.
This screen, shown in figure 4.21, initializes with the wiring configuration of the system being monitored selected and displayed. The screen will

To specify the wiring configuration of the system being monitored, press either of
 displayed, press Enter to lock in the selection.

4.10.6 CT Ratio

Note: See table 2.4 for data ranges before specifying the CT ratio.

This screen, shown in figure 4.22, displays the ratios of the current transformers connected to the IQ 200. This screen initializes with the ratio of the current transformers being used with the IQ 200 selected and displayed.

CIT Ratio
5:5 5

Figure 4.22 CT Ratio

To specify the ratio of the current transformers being
used with the IQ 200，press either of the Scroll arrows repeatedly to step through the choices individually，or press and hold either of the Scroll arrows to step through the choices rapidly．There are 256 choices from 5 to 8000 ，displayed as follows：
－ 5 to 110 in increments of 5
－ 110 to 1000 in increments of 10
－ 1000 to 1250 in increments of 25
－ 1250 to 8000 in increments of 50
When the desired choice is displayed，press Enter to lock in the selection．
 display then returns to the previous screen．

4．10．7 PT Ratio

Note：See table 2.4 for data ranges before specifying the PT ratio．
Position the selection arrow next to 洣旅药这and press Enter．

This screen，shown in figure 4．23，displays the ratio of the potential transformers connected to the IQ 200.

This screen initializes with the ratio of the potential transformers being used with the IQ 200 selected and

Pr Ratio
1．0：1

Figure 4．23 PT Ratio displayed．

To specify the potential transformer ratio of the potential transformers being used with the IQ 200，press either of the Scroll arrows repeatedly to step through the choices individually，or press and hold either of the Scroll arrows to step through the choices rapidly．There are 256 choices from 1.0 to 1690，displayed as follows：
－ 1.0 to 6 in increments of 0.1
－ 6 to 20 in increments of 1
－ 20 to 260 in increments of 5
－ 260 to 1690 in increments of 10
Note：If no potential transformers are being used，set the PT ratio to 1.0 to 1 ．
 display then returns to the previous screen．

4.10.8 Demand Window

Position the selection arrow next to :*O\%

This screen, shown in figure 4.24, displays the current value of the demand time window.

Figure 4.24 Demand Window

The screen initializes with the time window over which demand (parameters) are measured, selected, and displayed.

To specify Demand Window, press either of the Scroll arrows to step through the choices. There are 8 choices from 5 minutes to 60 minutes, displayed as follows:

- 5 min . to 30 min . in increments of 5 min .
- 45 min .
- 60 min .

When the desired choice is displayed, press Enter to lock in the selection.
 display then returns to the previous screen.
The Demand Window is a fixed period of time over which average system parameters are calculated. For example, setting the Demand Window to 15 instructs the IQ 200 to calculate the average current or power over the past 15 minutes and to update that calculation every 15 minutes.
If multiple IQ 200 units exist on an IMPACC™ network, all their Demand Windows can be simultaneously reset and synchronized using INCOM ${ }^{\text {TM }}$ communication.

4.10.9 KYZ Setup

 press Enter.

This screen, shown in figure 4.25, displays the system value communicated by the KYZ pulse train.

This screen initializes with the system value which

Figure 4.25 KYZ Setup the IQ 200 will ***selected.

To select a system value (kWh, kvarh, kVAh) which the IQ 200 will *** press either of the Scroll arrows repeatedly to step through the choices individually, or press and hold either of the Scroll arrows to step through the choices rapidly. There are 16 choices from 1 to 100 displayed as follows:

- 1 to 10 in increments of 1
- $20,40,50,60,80,100$

When the desired choice is displayed, press Enter to lock in the selection.
The screen changes to show the energy per pulse 鿰为 selected. To change the rate, press either of the Scroll arrows to step through the choices. When the desired choice is displayed, press Enter to lock in the selection. See 3.3.4 KYZ Pulse Initiator for details about choosing * * * *

If the procedure completes successfully, [-] [—] appears briefly. The display then returns to the previous screen.

4.10.10 Exit

Pressing Enter when this menu item is selected returns the display to the M ain Menu.

4.11 RESET VALUES

This menu item allows the user to reset to zero or to default IQ 200 system values and parameters.

Press Menu to display the list of available items.
 and press Enter.
 ** * * choices four at once. Every choice can be displayed by using the Scroll button arrows. The item currently selected is indicated by an arrow to its left.

Figure 4.26 Reset Values reset.

To select a choice, position the selection arrow next to it and press Enter.
For all choices selected, a screen similar to figure 4.27 displays. For other choices,
 example.

Figure 4.27 Reset Energy

Figure 4.28 Reset Amps Min/Max

To change the selection to $\boldsymbol{*} \boldsymbol{*}$ © press either of the Scroll arrows to toggle between虹 land 料 $\boldsymbol{\Delta}$ When 料 $\boldsymbol{\Lambda}$ is displayed as selected，press Enter to lock in the selection．
 display then returns to the previous screen．

4.12 CONTRAST ADJUST

This screen，shown in figure 4．29，allows the user to adjust the appearance of the display for best viewing．

Press Menu to display the list of available items．
Position the selection arrow next to $\because \boldsymbol{\sim} \boldsymbol{\Delta} \boldsymbol{\Delta}$
Press either of the Scroll arrows repeatedly to see the contrast change slowly，or press and hold either of the Scroll arrows to see the contrast change rapidly．Press the Menu button to exit and return to the main menu．

Contrast Adjust	
＇Up＇	to decrease
＇Down＇	to increase
＇Menu＇	to exit

Figure 4．29 Contrast Adjust

Alternatively，the contrast of the screen can be adjusted without entering the \because NTMenu by holding in the Enter button while pressing the S croll up arrow button（to decrease contrast）or the Scroll down arrow button（to increase contrast）．

4.13 DIAGNOSTICS

This menu item is reserved for the use of Cutler－Hammer service personnel．There are no user－accessible functions on this screen．

4.14 EXIT MENU

Press Enter to return to the previous menu；then pressing Enter or Menu will return to the $\boldsymbol{*} \boldsymbol{\Delta}$ ○ $\boldsymbol{*}$ ：menu．（See figure 4.3 in Section 4．6）

SECTION 5: TROUBLESHOOTING AND MAINTENANCE

5.1 GENERAL

5.1.1 Level of Repair

These troubleshooting procedures will determine only if the IQ 200 Display Module or the IQ 200 Base Module is the cause of the malfunction. They will not permit troubleshooting of components within the IQ 200 Modules. If an IQ 200 Module is determined to be at fault, replace it with a spare and return the malfunctioning Module to Cutler-Hammer for repair.

5.1.2 Maintenance and Care

The IQ 200 is designed to be a self-contained and maintenance-free unit. The printed circuit boards are calibrated and conformally coated at the factory. They are intended to be serviced by factory trained personnel only.

Never clean the IQ 200 with system or IQ 200 power on. Clean the IQ 200 using only a clean, dry cloth. Do not use water or solvents of any kind.

Operate the IQ 200 Base Module in an environment withi n the temperature range of $-20^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ and the display unit within a range of $0{ }^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. The environment should also be free of excess humidity.

If you have spare units, store them in the original packing material and container. The base unit storage environment temperature range should be $-30^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and $-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ for the display module.

5.2 REMOVAL AND REPLACEMENT

WARNING

Abstract

ALL MAINTENANCE PROCEDURES MUST BE PERFORMED ONLY BY QUALIFIED PERSONNEL WHO ARE FAMILIAR WITH THE IQ 200 AND ITS USES. FAILURE TO OBSERVE THIS WARNING COULD RESULT IN SERIOUS INJURY, DEATH, AND/OR EQUIPMENT DAMAGE. TROUBLESHOOTING PROCEDURES MAY INVOLVE WORKING ON EQUIPMENT IN AREAS WITH EXPOSED ENERGIZED (LIVE) ELECTRICAL WIRING AND/OR PARTS WHERE THE HAZARD OF FATAL ELECTRIC SHOCK IS PRESENT. PERSONNEL MUST EXERCISE EXTREME CARE TO AVOID INJURY OR DEATH. ALWAYS DISCONNECT, LOCK OUT, AND TAG THE CURRENT AND VOLTAGE SOURCES AND THE CONTROL POWER SUPPLY CIRCUIT BEFORE TOUCHING THE CONNECTIONS OR COMPONENTS ON THE REAR FACE OF THE IQ 200 BASE UNIT.

5.2.1 General Safety Precautions

- Turn off, lock out, and tag all sources of system power to the IQ 200 Base Module.
- Temporarily install a short circuit between the output legs of each current transformer connected to the IQ 200 Base Module, and tag.
- Turn off, lock out, and tag the IQ 200 Base Module power supply circuit.

5.2.2 IQ 200 Display Module

Perform the following steps to replace the IQ 200 Display Module.

- Disconnect the Category 5 cable from the IQ 200 Display Module, and mark it for later reconnecting.
- If the IQ 200 Base Module is attached to the IQ 200 Display Module, remove it by disengaging its DIN clip from the DIN rail mounted on the IQ 200 Display Module.
- Remove the thumbscrew from each of the 4 retainers on the sides of the IQ 200 Display Module.
- Slide out 3 of the 4 retainers.
- Grasp the IQ 200 Display Module to prevent it from falling, and remove the last retainer.
- Withdraw the IQ 200 Display Module and gasket (if in use).
- To reinstall or to replace the IQ 200 Display Module, reverse the above steps.

5.2.3 IQ 200 Base Module

Perform the following steps to replace the IQ 200 Base Module.

- Disconnect the Category 5 cable from the IQ 200 Base Module, and mark it for later reconnecting.
- Disconnect the INCOM ${ }^{\text {TM }}$ cable, if used, and mark it for later reconnecting.
- Disconnect all system voltage and current leads, and mark them for reconnecting. Making a simple sketch of the connections may be helpful during reinstallation.
- Remove the ground connection and mark it for reconnecting.
- If the IQ 200 Base Module is attached to the IQ 200 Display Module, remove it by disengaging its DIN clip from the DIN rail mounted on the IQ 200 Display Module.
- If the IQ 200 Base Module is mounted using a DIN rail/DIN clip, remove it b y disengaging the DIN clip mounted on the IQ 200 Base Module from the DIN rail on the mounting surface.
- If the IQ 200 Base Module is mounted using an L-bracket or other device, remove any attachments between the IQ 200 Base Module and the mounting device. Identify and retain all attachments for reinstallation.
- To reinstall the IQ 200 Base Module, reverse the above steps.

5.3 GENERAL TROUBLESHOOTING PROCEDURES

These procedures cover the IQ 200 only, and can only indicate or eliminate the IQ 200 as a cause of the malfunction. Because these procedures are not exhaustive, the user must be aware that other system components may be causing or contributing to system malfunctions.

To use the following troubleshooting guide, first identify the symptom of the malfunction in the first column. Then note the corresponding probable cause listed in the second column. Attempt one or more of the corresponding possible solutions in the third column. If following this general troubleshooting guide fails to correct the malfunction, contact the plant maintenance department or contact Cutler-Hammer
Power Management Applications Support at 1-800-809-2772, option 1.

IQ 200 Troubleshooting Guide		
Symptom	Probable Cause	Possible Solution
One or more voltage phases read incorrectly	Incorrect PT ratio	Check PT ratio using the View Setpoints screen of the display module. Adjust if incorrect using the edit setpoints screen.
Incorrect or zero current readings	Incorrect CT ratio	Check CT ratio using the View Setpoints screen of the display module. Adjust if incorrect using the edit setpoints screen.
Incorrect Power readings	Incorrect phasing of voltage and (or) currents	Check phasing and verify connections with wiring diagrams.
Unit fails to communicate over IMPACC network	Wrong or conflicting address set for IQ 200 Incorrect baud rate set for the IQ 200 Communication wiring error	Check the address of the IQ 200 base unit via a display module and verify that the software is addressing the proper unit. Check the baud rate set for the base unit via a display module and verify that it is the same as the system rate. Verify that wiring conforms to IMPACC wiring base rules. (see TD 17513)
Display module LCD screen is blank	Contrast is set too low Power to display module is absent	Press and hold the ENTER button the press and hold the "down" scroll button to adjust the contrast. Check Category 5 cable connection to display module and base unit. Check control power fuses, wiring connections, and voltage level.

5.4 TECHNICAL ASSISTANCE

For information, technical assistance, or referral to an authorized distributor, contact Cutler-Hammer Power Management Applications Support at 1-800-809-2772, option 1 , or connect to our website at $w w$.cutlerhammer.eaton.com.

5.5 RETURN PROCEDURE

This troubleshooting guide is intended to help service personnel determine if an observed malfunction is caused by the IQ 200 or by other external circumstances. If the malfunction is determined to be within the IQ 200 , return the IQ 200 to CutlerHammer for repair or replacement. To return the IQ 200, contact the local authorized Cutler-Hammer distributor for specific instructions.

Cutler-Hammer

Five Parkway Center
Pittsburgh, PA 15220

