

Draft WP www.eaton.com 12-Aug-14
 09:20:00

Modbus to INCOM Pass-Through
Messaging Procedure

1. Introduction

As documented in Eaton protocol guides
1
, the INCOM protocol supports reading and writing various

configuration settings via the INCOM communications port.

For example, when communicating with a typical IQ/INCOM device such as the Eaton ATC-800 controller,
the choice of which of the two sources is to be considered “preferred” can be selected via
communications.

This is accomplished by

1. Reading (downloading) the setpoint buffer from the ATC.

2. Locating the portion of the setpoint buffer that selects preferred source

3. Changing that value to select either Source 1, Source 2 or None
2
 as the preferred source.

4. Recalculating the setpoint buffer checksum

5. Writing (uploading) the modified setpoint buffer (with new checksum) back to the ATC

While the Eaton protocol guides only describe the method for modifying the Eaton device setpoint buffer
when using the INCOM protocol, this white paper describes a method that uses the Modbus protocol.

The Eaton INCOM protocol can be converted to and from Modbus using either of these two devices:

1. Modbus Product Operated Network Interface (Modbus PONI or MPONI for short)

2. Modbus Master INCOM Network Translator (Modbus MINT or MMINT for short)

Both of these devices permit a “pass-through” mode where INCOM messages can be imbedded as a
payload within a Modbus message. While either the MMINT or the MPONI can be used, Eaton
recommends using the MMINT rather than the MPONI as the MMINT supports larger data buffer
transfers

3
.

Special Modbus registers are reserved within the MMINT/MPONI for this INCOM pass-through method.
When the MMINT/MPONI receives a message from a Modbus master directed to those registers, the data
are extracted from the Modbus payload, converted to an INCOM message and transmitted to the Eaton
device using the INCOM protocol.

1
 IMPACC Protocol Guides

http://www.eaton.com/ecm/groups/public/%40pub/%40electrical/documents/content/1030709222496.pdf (INCOM overview) and
http://www.eaton.com/ecm/groups/public/%40pub/%40electrical/documents/content/il17384f.pdf (ATS specific)

2
 “None” means that if the load is connected to a good source, the ATC will not attempt to move it to another.

3
 When selected for 9600 bps, the MPONI limits a Modbus message to no more than 61 registers. When operating at 1200 bps,

the MPONI limits a Modbus message to no more than 10 registers at a time. The MMINT has neither limitation. You can still use
the MPONI, you will just need to split read requests of more than 61 registers into two or more separate read messages.

http://www.eaton.com/ecm/groups/public/%40pub/%40electrical/documents/content/1030709222496.pdf
http://www.eaton.com/ecm/groups/public/%40pub/%40electrical/documents/content/il17384f.pdf

2

WP www.eaton.com 12-Aug-14
 09:20:00

Figure 1: Left – MPONI wiring diagram, Right – MMINT with IPONI wiring diagram

As of the date of this document, the other Eaton devices that support Modbus protocol translation to and
from INCOM (i.e. Power Xpert Gateway PXG-400 and the PXG-600) do not support the INCOM pass-
through method and so cannot be used with this technique.

2. INCOM Pass-Through

Both the MPONI and the MMINT support pre-configured tables that are pre-populated with data from the
connected INCOM device (or devices in the case of the MMINT). Data in these tables pre-populates once
the MPONI or MMINT powers up and communications is established with the connected INCOM
device(s). However if the data required by the Modbus master from the IQ/INCOM device is not pre-
populated in the MPONI or MMINT tables, the user has the option of using something called INCOM
Pass-Through.

This pass-through method allows a Modbus master to execute any available INCOM message supported
by the INCOM device.

This pass-through method can, for example, be used to read or write a device’s setpoint buffer (a set of
values not pre-populated within the MMINT/MPONI).

By reading and changing the setpoint buffer, control commands or other actions within the INCOM device
can be made. An example of this would be the ability to change the preferred source selection within an
Eaton ATC-800

1
 automatic transfer switch controller to a different value. The setpoint values are not

available in the pre-populated tables within either the MPONI or the MMINT.

To use this method, however, requires more Modbus messages than just simply issuing a request for a
block of data from the ATC.

The INCOM pass-through method requires that the user send a request to the MMINT/MPONI, wait for it
to execute the command, then send another request to the MMINT/MPONI to confirm that the action took
place successfully, and optionally retrieve any requested data.

1
 More information on this product can be found at

http://www.eaton.com/ecm/groups/public/@pub/@electrical/documents/content/td15a09te.pdf. More information regarding the
native INCOM communication protocol supported by this product can be found at
http://www.eaton.com/ecm/groups/public/@pub/@electrical/documents/content/il17384c.pdf

http://www.eaton.com/ecm/groups/public/@pub/@electrical/documents/content/td15a09te.pdf
http://www.eaton.com/ecm/groups/public/@pub/@electrical/documents/content/il17384c.pdf

3

WP www.eaton.com 12-Aug-14
 09:20:00

Steps:

1. The user’s Modbus master writes (using the Modbus preset register function code 16 dec or 10
hex) a message to the MPONI/MMINT that contains the embedded INCOM message intended for
a particular INCOM device. Note that the Modbus slave address always matches the IQ/INCOM
address, however, depending on whether the MMINT or MPONI are used, this address matching
mechanism differs.

Referring to Figure 1 on page 2, notice that the MPONI is connected one-to-one with an
IQ/INCOM device. For the MPONI, the Modbus slave address and the INCOM address are the
same value, and are set using rotary switches on the MPONI.

For the MMINT the physical wiring layout is different. Notice that one MMINT can support multiple
IQ/INCOM devices. With the MMINT, throughput alone establishes the only numeric limit. The
twisted pair physical media itself supports up to 1000 IQ/INCOM slave nodes on the same twisted
pair. However, since the MMINT can support multiple devices, the method of addressing the
slave IQ/INCOM devices is for the MMINT to pass-through the IQ/INCOM address (as set on
rotary switches on IQ device or within software of devices with embedded INCOM support). In
other words, if an IQ/INCOM device has the address 10 hex, the Modbus address of that node will
be 10 hex (16 decimal).

2. The next step is for the MPONI/MMINT to extract the INCOM payload from the received Modbus
message and transmit it to the IQ/INCOM network (MMINT) or device (MPONI).

3. Depending on the type of message sent to the IQ/INCOM device, the IQ/INCOM device responds
with either an acknowledgement (as would be typical for a Modbus write message) or with
returned data (typical for a read message). The MPONI/MMINT stores the response from the
controller in a separate Modbus register map within the MPONI/MMINT.

4. In a separate message, the Modbus master reads (using Modbus read registers function 03)
block of Modbus registers to retrieve the response to the previous message. The data contained
in these registers will vary depending on whether the INCOM message transmitted was a request
for data or if it was a command that wrote data to the ATC.

a. Request for data: Modbus registers will contain the data requested by the INCOM
message

b. Command to write data: Modbus registers will contain the acknowledgement of whether
the message was received properly or if some error occurred.

Refer to Figure 2 for a diagram that explains this multi-step process in more detail.

4

WP www.eaton.com 12-Aug-14
 09:20:00

Figure 2 – Two Modbus messages are required for each Read INCOM Pass-Through

While reading data from an INCOM device is relatively straight-forward (two Modbus messages required
as shown in Figure 2), the process for writing data from a Modbus master to an INCOM device using the
INCOM pass-through method is surprisingly complex.

Figure 2 above and the step listed below explain in more detail how the INCOM pass-through method
works with the MMINT or MPONI.

 Steps

1 Modbus Master transmits INCOM request embedded within a Modbus Write Register (16 decimal
or 10 hexadecimal) to the MMINT/MPOINI

2 MMINT/MPONI discards the Modbus overhead and extracts the INCOM payload.

3 MMINT/MPONI extracts the INCOM payload and transmit to the IQ/INCOM device

4 IQ/INCOM device receives, processes and replies to the message

5 IQ/INCOM device transmits reply (or replies) to MMINT/MPONI

6 MMINT/MPONI stores this data in a Modbus accessible register map

7 MMINT/MPONI transmits a Modbus reply that informs the Modbus master that the message was
transmitted correctly. Note: the reply does not contain the data requested – only an
acknowledgement that the message was received correctly by the MMINT/MPONI and that the
IQ/INCOM device processed the message correctly. If the IQ/INCOM device rejected the
message (wrong register, wrong number of registers, or some other problem), the Modbus reply
will contain an error code.

8 A second Modbus message, this one a Modbus read (03) command must be sent from the
Modbus master to the MPONI/MMINT to retrieve the data received from the previous Modbus
message.

9 MMINT/MPONI responds with a reply containing the data requested.

5

WP www.eaton.com 12-Aug-14
 09:20:00

The Modbus protocol
1
 supports methods for reading and writing memory within Modbus slave nodes. In

this document we will describe a Visual Basic 2010 program that uses these two function codes:

1. Modbus Function Code 3 – Read Holding Registers

2. Modbus Function Code 16 (10 Hex) – Preset Multiple Registers

While the maximum was not tested, the MMINT was confirmed to support Modbus read requests of the
complete setpoint buffer (43 24-bit messages which corresponds to 86 Modbus 16-bit registers) in one
message.

However, the Eaton MMINT/MPONI limits the number of registers that can be written during a single
Modbus write command to only one 24-bit INCOM message. This corresponds to two 16-bit Modbus at a
time. Writing a setpoint buffer with 43 messages would require 43 separate Modbus write messages.
This is the primary reason for the increased complexity when writing data to an INCOM device using this
method.

3. Setpoint Buffer Read/Write

As discussed in “Introduction”, one example of using this technique would be to read and write a setpoint
buffer in an automatic transfer switch controller and change the preferred source selection. As described
in Eaton Instruction Leaflet IL 17384, Part F, Section 450

2
, the (3 C 9) “Transmit Setpoints Buffer

command returns to the requestor, all of the user selectable (and many of the factory preset) setpoint
values. For the ATC-600 and -800 controllers, included in this list is the choice of which of the two
sources is considered “preferred”.

In particular, Byte 2 of Message 27 represents the low byte and Byte 0 of Message 28 represents the high
byte of a 16 bit integer that can contain a number that is either 0, 1 or 2

 0: No source is preferred. If connected to a valid source, no attempt will be made to switch

 1: Source 1 is preferred. If Source 1 is good, an attempt will be made to switch to Source 1

 2: Source 2 is preferred. If Source 2 is good, an attempt will be made to switch to Source 2

To change this source selection value, once this setpoint buffer is downloaded, the low byte of Message
27 can be changed

3
, a new buffer checksum must be computed and stored as the final three bytes

(Message 43, Byte 0, Byte 1 and Byte 2).

3.1. Checksum Calculation

In addition to the Modbus CRC included over the entire message, Message 43 of the data payload
received as part of the response to the “Transmit Setpoints Buffer” command contains a checksum of the
previous 42 INCOM messages contained in that payload.

This checksum increases the certainty that the data was received without corruption. Each of those 42
messages is contains a 24-bit value encoded as three 8-bit bytes. The checksum algorithm sums each
of those 8-bit bytes separately without concern for location.

It is important for any program that wishes to transmit changed setpoints back to the ATC to be able to
calculate this checksum accurately. A setpoint buffer transmitted to the ATC with an invalid 43

rd
 message

checksum will be rejected by the ATC.

1
 http://www.modbustools.com/PI_MBUS_300.pdf

2
 http://www.eaton.com/ecm/groups/public/%40pub/%40electrical/documents/content/il17384f.pdf

3
 The high byte will always be zero so no change is needed.

http://www.modbustools.com/PI_MBUS_300.pdf
http://www.eaton.com/ecm/groups/public/%40pub/%40electrical/documents/content/il17384f.pdf

6

WP www.eaton.com 12-Aug-14
 09:20:00

Recall from the INCOM protocol guide
1
 that all INCOM data messages contain 24 bits, broken into three

eight bit bytes (or octets) labeled [B2] for the most significant 8-bits, then [B1] for the middle 8-bits and
then [B0] for the least significant 8-bits.

Since Modbus transmits 16-bits at a time, to send 24-bits, we need to send two 16-bit messages or 32-bits
total.

Therefore when retrieving a large table of registers from an IQ/INCOM device using the MMINT/MPONI
each 24-bit INCOM message will be stored in two 16-bit registers. Since two 16-bit registers contains 32-
bits, the eight extra bits are allocated as “status” bits and provide information about whether the message
was received correctly. Consult the appropriate MMINT

2
 or MPONI

3
 manual for more information on

these status bits.

Figure 3

As an example, here is a partial listing of the data returned in response to a “Transmit Setpoints Buffer”
command (an INCOM “3 C 9” command):

1
 http://www.eaton.com/ecm/groups/public/@pub/@electrical/documents/content/1030709222496.pdf

2
 http://www.eaton.com/ecm/groups/public/@pub/@electrical/documents/content/66a7508.pdf

3
 http://www.eaton.com/ecm/groups/public/@pub/@electrical/documents/content/66a2070.pdf

http://www.eaton.com/ecm/groups/public/@pub/@electrical/documents/content/1030709222496.pdf
http://www.eaton.com/ecm/groups/public/@pub/@electrical/documents/content/66a7508.pdf
http://www.eaton.com/ecm/groups/public/@pub/@electrical/documents/content/66a2070.pdf

7

WP www.eaton.com 12-Aug-14
 09:20:00

Table 1

This table shows the relationship between the INCOM message, the Modbus register address (shown as
hexadecimal addressing), the raw data contained in the INCOM message and a description of that data.
The first column “Message” is the INCOM message number. Each message contains 24-data bits (3
bytes) plus a status byte for a total 4 bytes per message.

The second column “Hex” shows the offset (in hexadecimal) from the beginning of the Modbus holding
register table within the MPONI or MMINT (same address in either).

The third column (unmarked) has “B0”, “S”, “B2” and “B1”. These codes correspond to the position of the
byte within the 24-bit INCOM message. In other words, a 24-bit value would be written as [B2][B1][B0],
but would stored in the Modbus registers somewhat out of order as shown below.

Figure 4

The status byte is transmitted with each message and should be used to determine if the MPONI/MMINT
to INCOM device communication proceeded normally.

If the Modbus master had transmitted a request to retrieve two 16-bit Modbus register values from the
MPONI / MMINT, that data would be returned in two INCOM messages as shown below.

8

WP www.eaton.com 12-Aug-14
 09:20:00

Figure 5

Notice that the first message returned consists of two 16-bit Modbus registers, 6100h and 6101 or 32-bits
total. Since INCOM only transmits 24-bits of data per message, the remaining 8-bits are used as a status
message sent by the MMINT or MPONI to advise whether the INCOM data retrieved from the ATC was
valid or not. A zero in this status byte (low byte of the first of the two register pair) indicates no errors.
This status byte is not used in our checksum calculation, although should it be non-zero, we would want to
discard this data anyway as it would be invalid for different reasons (bad communications detected
between MMINT/MPONI and ATC).

In this example, all status bytes are zero, so we begin our checksum calculation one byte at a time as
follows:

1. Message 1, 6100 hex offset from beginning of Modbus Holding register table, high byte = 2A hex
(42 decimal) – rolling checksum = 42 decimal

2. Message 1, 6101 hex offset from beginning of Modbus Holding register table, high byte = 05 hex
(5 decimal) – rolling checksum = 47 decimal

3. Message 1, 6101 hex offset from beginning of Modbus Holding register table, low byte = 03 hex (3
decimal) – rolling checksum = 50 decimal

9

WP www.eaton.com 12-Aug-14
 09:20:00

4. Message 2, 6102 hex offset from beginning of Modbus Holding register table, high byte = 1 hex (1
decimal) – rolling checksum = 51 decimal

5. Message 2, 6103 hex offset from beginning of Modbus Holding register table, high byte = 1 hex (1
decimal) – rolling checksum = 52 decimal

6. Message 2, 6103 hex offset from beginning of Modbus Holding register table, low byte = 1 hex (1
decimal) – rolling checksum = 53 decimal

At this point after processing 3 bytes in our setpoint table from the first two messages, the rolling
checksum equals 53 decimal.

When all the [B2], [B1] and [B0] values for each of the 42 data messages are summed, this checksum is
then compared with the 43

rd
 message which contains the value of checksum computed by the ATC. That

16-bit value is stored in bytes [B1] [B0] of message 43. For an additional check, the ATC computes the
1’s complement of the low byte [B0] and places this value in the 43

rd
 message as [B2]

Table 2

4. Procedure to Read Setpoint Buffer

The steps are as follows:

1. Write the value C3AB16 into MMINT (or MPONI
1
) register 600016 and the value 900116 into register

600116 using one Modbus write register (function code 16 decimal) instruction. C3AB
corresponds to sending the 3 C 9 INCOM command with the expectation that 43 INCOM
messages will be returned.

1
 As mentioned earlier, the MPONI is not recommended when reading the setpoint buffer

'***Example***
' send 3 C 9 command to INCOM address 001
'[INST] = 3 (0011), [COMM] = C (1100), [SCOM] = 9 (1001)
'3 C 9 is a control message and it expects 43 messages in reply
'43 decimal is 101011 binary
'when combined with the most significant bit being 1 (for control msg)
'the result is 0xAB = 1010 1011

'0x6000 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
' --[COMM]-- --[INST]-- CD R [# of msgs expected]
' 1 1 0 0 0 0 1 1 1 0 1 0 1 0 1 1
' C 3 A B
'0x6001 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
' --[SCOM]-- / -[12-bit INCOM address of device]-
' 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
' 9 0 0 1
'So, 0x6000 will be loaded with 0xC3AB
'and 0x6001 will be loaded with 0x9001

10

WP www.eaton.com 12-Aug-14
 09:20:00

2. If Modbus write command was successful, then wait for 50 ms to allow the MMINT time to send
the message onto the INCOM slave.

3. Read the Modbus buffer beginning at 600016. The number of registers to read depends on the
particular setpoint buffer. For example, the ATC-800 setpoint buffer contains 43 24-bit setpoints.
This will be returned as 86 16-bit Modbus registers.

5. Procedure to Write Setpoint Buffer

Once the setpoint buffer has been retrieved by the Modbus master and the appropriate changes are
made, the steps to follow are:

1. Calculate the new Setpoint Buffer checksum

a. Divide this value by 256 and ignore any remainder – save this in high byte of checksum

b. Take high byte of checksum and multiply by 256 and subtract this product from complete
checksum – save this in the low byte of the checksum.

c. Take the 1’s complement of the low byte of the
checksum

'now retrieve data from address &h6100
 If MB_Read(1, &H6100, mb_buffer, (2 * NumMsgReplyExpected)) Then
 'message received okay
 frmMain.lbl_MB_Xsum.Text = "Valid"
 frmMain.lbl_MB_Xsum.ForeColor = Color.Black
 bEFlag = False
 Exit Do
 Else
 'failed somehow
 frmMain.lbl_MB_Xsum.Text = "Invalid"
 frmMain.lbl_MB_Xsum.ForeColor = Color.Red
 g_MB_errors += 1
 bEFlag = True
 End If

Do While iLoopCount < giMaxLoopCount - 1
 If MB_Write(1, &H6000, mb_buffer, 2) Then
 'message transmitted okay
 frmMain.lbl_MB_Xsum.Text = "Valid"
 frmMain.lbl_MB_Xsum.ForeColor = Color.Black
'wait to allow that first message to be processed
 Pause(50) '50 ms

'load checksum into appropriate registers
 SPBuffer(174) = newSPXsum \ 256 'high byte of checksum
 SPBuffer(171) = newSPXsum - SPBuffer(174) * 256 'low byte
 SPBuffer(173) = Not SPBuffer(171) 'complement of low byte

11

WP www.eaton.com 12-Aug-14
 09:20:00

2. Write the value F38116 into MMINT (or MPONI
1
) register 600016 and the value 900116 into register

600116 using one Modbus write register (function code 16 decimal) instruction. This will tell the
MMINT to expect 43 more messages.

3. Send the first of the 43 messages by writing the first 32 bits into Modbus registers 600016 and
600116.

4. Repeat step 3 for each message.

6. Visual Basic Example Programs

While Modbus master routines are available in a variety of versions of Microsoft’s Visual Basic, the newest
version (as of the date of this document) is Visual Basic 2010. The “Express” version of this program is
available free of charge

2
 for both personal and business use.

The following code examples are written in VB2010 Express.

6.1. MB_Read

This routine reads a block of registers from a Modbus slave such as the MMINT or MPONI using Modbus
function code 03.

Inputs:

mb-add Modbus slave address (1-247 typically)

start Starting register address in Modbus slave (0 is first address)

length Number of 16-bit registers to read

1
 As mentioned earlier, the MPONI is not recommended when reading the setpoint buffer

2
 http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-basic-express

'pass-through protcol requires that each message be transmitted separate
 'First, send 3 F 9
 mb_buffer = {&HF381, &H9001} '3 F 9 and 9000 + INCOM add
 If MB_Write(1, &H6000, mb_buffer, 2) Then
 'INCOM 3 F 9 control message transmitted okay

For i = 1 To 43
 'download 42 setpoints. 43rd message is checksum of previous 42 setpoints
 'each message begins on a 4-byte boundary since each is 32-bits (2 Modbus

'registers) long
 byte_pointer = i * 4 - 1 'msg 1 ->3, 4, 5, 6; msg 2 -> 7, 8, 9, 10
 'mb_buffer(0) = [B0]01 mb_buffer(1) = [B2][B1]
 mb_buffer(0) = SPBuffer(byte_pointer) * 256 + 1
 mb_buffer(1) = SPBuffer(byte_pointer + 2) * 256 + SPBuffer(byte_pointer + 3)
 'transmit INCOM data message
 If MB_Write(1, &H6000, mb_buffer, 2) Then
 'successful write
 Else
 'failed to write
 frmMain.lbl_MB_Xsum.Text = "Invalid"
 frmMain.lbl_MB_Xsum.ForeColor = Color.Red
 frmMain.lbl_MB_total_errors.Text = Str(g_MB_errors)
 frmMain.rtb_Advisory.AppendText(vbCrLf + "MB Write to 0x6000, Msg:" + i _

 + " failed" + vbCrLf)
 Exit Sub 'exit early since the message will be discarded at INCOM

'device anyway
 End If
Next

http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-basic-express

12

WP www.eaton.com 12-Aug-14
 09:20:00

Outputs:

data_2_read Buffer to place received data

MB_Read Status returned (1: good, 0: failed)

Public Function MB_Read(ByVal mb_add As Byte, ByVal start As Integer, ByRef data_2_read As UInt16(),
ByVal length As Integer) As Byte
 'read from slave using Modbus function code 03
 'Send:
 '[Slave Add][Func 03][HB start add][LB start add][HB # regs to write][LB of # regs to write][LB
CRC][HB CRC]
 'Response:
 '[Slave Add][Func 03 dec AND error code][Byte Count][HB D1][Lb D1][HB D2][LB D2]...[HB Dn][LB
Dn][LB CRC][HB CRC]

 Dim ModbusMsg(256) As Byte
 Dim CRC As UInt16
 Dim MsgStr As String = ""
 Dim i, x As Integer
 Dim temp_string As String
 byte_counter = 0 'clear

 g_bCommActive = True 'comm active with this device (might be redundant, but include just to be
sure)

 ModbusMsg(0) = mb_add
 ModbusMsg(1) = 3
 ModbusMsg(2) = start \ 256
 ModbusMsg(3) = start - ModbusMsg(2) * 256
 ModbusMsg(4) = length \ 256
 ModbusMsg(5) = length - ModbusMsg(4) * 256

 'compute the CRC
 CRC = ModCRC(ModbusMsg, 6)
 'must invert byte order HB->LB and LB->HB
 ModbusMsg(7) = CRC \ 256
 ModbusMsg(6) = CRC - ModbusMsg(7) * 256

 'convert byte array to hex string
 For i = 0 To (8) - 1
 temp_string = (Convert.ToString(ModbusMsg(i), 16).PadLeft(2, "0"c).PadRight(3, " "c))
 'padded = StrDup(2 - Len(temp_string), "0") & temp_string
 'MsgStr = MsgStr + padded
 MsgStr = MsgStr + temp_string
 Next
 WriteByte(ModbusMsg, 8, True)

 Pause(20) 'pause 50 ms
 If array_count <> 0 Then
 Pause(2) 'wait 20 ms
 x = array_count 'read number of characters
 Pause(1) 'wait 10 ms
 Do Until array_count = x
 x = array_count 'read number of characters
 Pause(1) 'wait 10 ms
 Loop
 End If

 'now parse the reply stored in global array data_buffer
 If VerifyCRC(data_buffer, byte_counter) Then
 'CRC on reply is good
 MB_Read = 1
 Else

13

WP www.eaton.com 12-Aug-14
 09:20:00

 'CRC on reply failed
 MB_Read = 0
 g_MB_errors += 1
 End If
 Pause(5)
 If array_count <> 0 Then
 Pause(2) 'wait 20 ms
 x = array_count 'read number of characters
 Pause(1) 'wait 10 ms
 Do Until array_count = x
 x = array_count 'read number of characters
 Pause(1) 'wait 10 ms
 Loop
 End If

 End Function

6.2. MB_Write

This routine writes a block of registers to a Modbus slave such as the MMINT or MPONI using the
Modbus function code 10h (16 decimal). Note that with the Eaton implementation of the Modbus write 10h
function when using the MMINT or MPONI, the maximum write length is limited to two 16-bit registers.
Longer blocks of registers must be divided into multiple write messages and sent separately.

Input:

mb-add Modbus slave address (1-247 typically)

start Starting register address in Modbus slave (0 is first address)

data_2_read Buffer to be written to Modbus slave

length Number of 16-bit registers to write

Output:

MB_Write Status of CRC in acknowledgement from Modbus slave (1: good, 0: bad)

Public Function MB_Write(ByVal mb_add As Byte, ByVal start As Integer, ByVal data_2_write As UInt16(),
ByVal length As Integer) As Byte

 'write to slave using Modbus function code 16 (10 hex)
 'mb_add Modbus address of slave
 'start starting register address to write
 'data_2_write 16 bit data, written as 2x8-bit bytes
 'length number of 16 bit data registers to write

 'Send:
 '[Slave Add][Func 16 dec, 10 hex][HB start add][LB start add][HB # regs to write][LB of # regs to
write][Byte Count][HB D1][Lb D1][HB D2][LB D2]...[HB Dn][LB Dn][LB CRC][HB CRC]

 'Response:
 '[Slave Add][Func 16 dec AND error code][HB start add][LB start add][HB # regs to write][LB of #
regs to write][LB CRC][HB CRC]

 Dim ModbusMsg(256) As Byte
 Dim CRC As UInt16
 Dim MsgStr As String = ""
 Dim i, x As Integer
 Dim temp_string As String
 byte_counter = 0 'clear

 ModbusMsg(0) = mb_add

14

WP www.eaton.com 12-Aug-14
 09:20:00

 ModbusMsg(1) = 16 '10 hex
 ModbusMsg(2) = start \ 256
 ModbusMsg(3) = start - ModbusMsg(2) * 256
 ModbusMsg(4) = length \ 256
 ModbusMsg(5) = length - ModbusMsg(4) * 256
 ModbusMsg(6) = length * 2
 For i = 0 To length - 1
 ModbusMsg(7 + 2 * i) = data_2_write(i) \ 256
 ModbusMsg(8 + 2 * i) = data_2_write(i) - ModbusMsg(7 + 2 * i) * 256
 Next

 'compute the CRC
 CRC = ModCRC(ModbusMsg, 7 + 2 * length)
 'must invert byte order HB->LB and LB->HB
 ModbusMsg(8 + 2 * length) = CRC \ 256
 ModbusMsg(7 + 2 * length) = CRC - ModbusMsg(8 + 2 * length) * 256

 'convert byte array to hex string
 For i = 0 To (9 + 2 * length) - 1
 temp_string = (Convert.ToString(ModbusMsg(i), 16).PadLeft(2, "0"c).PadRight(3, " "c))
 'padded = StrDup(2 - Len(temp_string), "0") & temp_string
 'MsgStr = MsgStr + padded
 MsgStr = MsgStr + temp_string
 Next
 WriteByte(ModbusMsg, 9 + 2 * length, True)

 Pause(6)
 If array_count <> 0 Then
 Pause(2) 'wait 20 ms
 x = array_count 'read number of characters
 Pause(1) 'wait 10 ms
 Do Until array_count = x
 x = array_count 'read number of characters
 Pause(1) 'wait 10 ms
 Loop
 End If

 'now parse the reply stored in global array data_buffer
 If VerifyCRC(data_buffer, byte_counter) Then
 'CRC on reply is good
 MB_Write = 1
 Else
 'CRC on reply failed
 MB_Write = 0
 g_MB_errors += 1
 End If

 End Function

6.3. ModCRC

This function calculates the CRC-16 checksum over the length of characters transmitted in the Modbus
message. This checksum is added as the last two bytes in the message.

Input:

Buffer() Array holding the Modbus message

length Number of bytes in array buffer

Output:

ModCRC 16 bit CRC-16

 'Copyright Richard L. Grier, 2006

15

WP www.eaton.com 12-Aug-14
 09:20:00

 '---
 Public Function ModCRC(ByVal Buffer() As Byte, ByVal length As Integer) As Integer
 '---

 ' returns the MODBUS CRC of buffer
 Dim CRC1 As Long
 Dim I As Integer
 Dim J As Integer
 Dim K As Long

 CRC1 = &HFFFF ' init CRC
 'For I = 0 To UBound(Buffer) - 1 ' each byte
 For I = 0 To length - 1 ' each byte
 CRC1 = CRC1 Xor Buffer(I)
 For J = 0 To 7 ' for each bit in byte
 K = CRC1 And 1 ' bit 0 value
 CRC1 = ((CRC1 And &HFFFE) / 2) And &H7FFF ' Shift right with 0 ms bit
 If K > 0 Then CRC1 = CRC1 Xor &HA001
 Next J
 Next I
 ModCRC = CRC1
 End Function

6.4. VerifyCRC

This function compares the CRC appended on end of the Modbus message with a separate calculation of
the CRC. The two CRC values are compared and if same, then a valid flag is set. If the two CRC values
do not match, the assumption is made that the message was corrupted during transmission and a flag is
set indicating the message is invalid and should be discarded.

Input:

buffer Buffer containing the Modbus message

mb_count Number of bytes in the Modbus message buffer

Output:

VerifyCRC Status (0: failed test, 1: passed test)

Public Function VerifyCRC(ByVal buffer As Byte(), ByVal mb_count As Integer)
 'recalculate CRC over message and verify it matches CRC on message
 Dim CRC As UInt16
 Dim CRC1 As Byte
 Dim CRC2 As Byte

 If mb_count = 0 Then 'nothing received
 VerifyCRC = 0 'failed test
 frmMain.rtb_Advisory.AppendText("No response received to MB request" + vbCrLf)
 Exit Function
 End If

 CRC = ModCRC(buffer, mb_count - 2)
 CRC1 = CRC \ 256
 CRC2 = CRC - CRC1 * 256

 If buffer(mb_count - 1) <> CRC1 Then
 VerifyCRC = 0 'failed test
 Exit Function
 ElseIf buffer(mb_count - 2) <> CRC2 Then
 VerifyCRC = 0 'failed test
 Exit Function

16

WP www.eaton.com 12-Aug-14
 09:20:00

 Else
 VerifyCRC = 1 'both bytes match. passed test
 End If

 End Function

6.5. SendINCOMCtrlMsg

Transmit a single INCOM control message as an embedded message within a Modbus. Referring to the
INCOM/IMPACC protocol manual

1
 the message consists of three parts:

[INST] [COMM] [SCOM]

A typical control message is the “Transmit Setpoints Buffer – 3 C 9”

INST = 3 (0011 binary)

COMM = C (1100 binary)

SCOM = 9 (1001 binary)

The MMINT/MPONI Modbus write protocol requires that these values be loaded into Modbus registers
6000h and 6001h as follows:

6000h bits 15-12 contain [COMM]

6000h bits 11-8 contain [INST]

6000h bit 7 contains 1 (meaning this is a control message)

6000h bit 6 contains 0 (reserved for future use)

6000h bits 5-0 contains binary number equal to the number of messages expected to returned

6001h bits 15-12 contains [SCOM]

6001h bits 11-0 contains the 12-bit binary address of the INCOM slave (1-4095)

The MMINT/MPONI receives this message, extracts the INCOM payload ([INST] [COMM] [SCOM]),
transmits this payload to the INCOM device and waits for the response. The response is then stored in
separate registers (address 6100h). This function retrieves the returned data from those registers and
places the raw data in the Visual Basic global variable mb_buffer.

Input:

INCOMAdd INCOM slave address (1-4095 decimal, 000 0001 to 111 1111 binary)

INST INCOM instruction field

COMM INCOM command field

SCOM INCOM sub-command field

NumMsgReplyExpected Number of INCOM 24-bit messages expected in response

INCOMResponse Array containing INCOM messages

Output:

bEFlag Error flag (False: no error, True: error)

1
 http://www.eaton.com/ecm/groups/public/%40pub/%40electrical/documents/content/1030709222496.pdf

http://www.eaton.com/ecm/groups/public/%40pub/%40electrical/documents/content/1030709222496.pdf

17

WP www.eaton.com 12-Aug-14
 09:20:00

SendINCOMCtrlMsg Status message (0: error, 1: no error)

Public Function SendINCOMCtrlMsg(ByVal INCOMAdd As UInt16, ByVal INST As Byte, ByVal COMM As Byte, ByVal
SCOM As Byte, ByVal NumMsgReplyExpected As UInt16, ByRef INCOMResponse As Byte())

 'the MMINT/MPONI pass-through protocol requires that we write INCOM msg to a two register pair
 '0x6000 and 0x6000 with the following format for a control message

 'Control Message:
 '0x6000 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
 ' --[COMM]-- /--[INST]-- CD R [# of msgs expected]
 'CD = 1: xmit INCOM control message
 'R = reserved (always 0)

 '0x6001 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
 ' --[SCOM]-- /-[12-bit INCOM address of device]-

 '***Example***
 'send 3 C 9 command to INCOM address 001
 '[INST] = 3 (0011), [COMM] = C (1100), [SCOM] = 9 (1001)
 '3 C 9 is a control message and it expects 43 messages in reply
 '43 decimal is 101011 binary
 'when combined with the most significant bit being 1 (for control msg)
 'the result is 0xAB = 1010 1011

 '0x6000 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
 ' --[COMM]-- --[INST]-- CD R [# of msgs expected]
 ' 1 1 0 0 0 0 1 1 1 0 1 0 1 0 1 1
 ' C 3 A B
 '0x6001 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
 ' --[SCOM]-- / -[12-bit INCOM address of device]-
 ' 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
 ' 9 0 0 1
 'So, 0x6000 will be loaded with 0xC3AB
 'and 0x6001 will be loaded with 0x9001

 Dim mb_buffer As UInt16() = {0, 0}
 Dim iLoopCount As Integer
 Dim bEFlag As Boolean = False

 'preload with INCOM values
 mb_buffer(0) = 128 + (NumMsgReplyExpected) + (INST * 256) + (COMM * 4096)
 mb_buffer(1) = INCOMAdd + (SCOM * 4096)

 Do While iLoopCount < giMaxLoopCount - 1
 If MB_Write(1, &H6000, mb_buffer, 2) Then
 'message transmitted okay
 frmMain.lbl_MB_Xsum.Text = "Valid"
 frmMain.lbl_MB_Xsum.ForeColor = Color.Black

 'wait to allow that first message to be processed
 Pause(50) '200 ms

 'now retrieve data from address &h6100
 If MB_Read(1, &H6100, mb_buffer, (2 * NumMsgReplyExpected)) Then
 'message received okay
 frmMain.lbl_MB_Xsum.Text = "Valid"
 frmMain.lbl_MB_Xsum.ForeColor = Color.Black
 bEFlag = False
 Exit Do
 Else
 'failed somehow
 frmMain.lbl_MB_Xsum.Text = "Invalid"

18

WP www.eaton.com 12-Aug-14
 09:20:00

 frmMain.lbl_MB_Xsum.ForeColor = Color.Red
 g_MB_errors += 1
 bEFlag = True
 End If

 Else
 'failed somehow
 frmMain.lbl_MB_Xsum.Text = "Invalid"
 frmMain.lbl_MB_Xsum.ForeColor = Color.Red
 g_MB_errors += 1
 frmMain.lbl_MB_total_errors.Text = Str(g_MB_errors)
 If frmMain.lbl_MB_total_errors.Text > 0 Then
 frmMain.lbl_MB_total_errors.ForeColor = Color.Red
 Else
 frmMain.lbl_MB_total_errors.ForeColor = Color.Black
 End If
 SendINCOMCtrlMsg = 1

 End If
 iLoopCount += 1
 UpdateCommStatus("Attempt:" + Str(iLoopCount + 1))
 Loop
 MoveINCOMResponse(INCOMResponse, NumMsgReplyExpected * 4)
 If bEFlag Then
 SendINCOMCtrlMsg = 0
 Else
 SendINCOMCtrlMsg = 1
 End If
 End Function

6.6. SendINCOMDataMsg

INCOM data messages are used either as replies to a control message or as subsequent messages sent
by an INCOM master after that master has sent a control message. For example, if the INCOM master is
sending a setpoint buffer to an INCOM slave, it will begin by sending the 3 C 9 control command and then
follow it up with 43 data messages of the form that follows:

Input:

B2 INCOM Data Message Byte 2 of 24-bit INCOM data message

B1 INCOM Data Message Byte 1 of 24-bit INCOM data message

B0 INCOM Data Message Byte 0 of 24-bit INCOM data message

Output:

Public Sub SendINCOMDataMsg(ByRef B2 As Byte, ByRef B1 As Byte, ByRef B0 As Byte)

 'the MMINT/MPONI pass-through protocol requires that we write INCOM msg to a two register pair
 '0x6000 and 0x6000 with the following format for a data message
 'Data Message:
 '0x6000 bit 15-8 INCOM [B0]
 ' bit 7 C/D bit 1: INCOM control msg, 0: INCOM data msg
 ' bit 6 0 (reserved)
 ' bits 5-0 # of INCOM messages expected in reply to this message
 '0x6001 bits 15-8 INCOM [B2]
 ' bits 7-0 INCOM [B1]

 'written out bit-wise:
 '0x6000 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
 ' -------[B0]---------- 0 R [# of msgs expected]
 'bit 07 = 0: since this is a xmit INCOM data messsage

19

WP www.eaton.com 12-Aug-14
 09:20:00

 'R = reserved (always 0)

 '0x6001 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
 ' -------[B2]---------- -------[B0]----------

 Dim mb_buffer As UInt16()
 Dim iLoopCount As Integer
 'first check if control or data message
 mb_buffer = {&HC3AB, &H9001}

 Do While iLoopCount < giMaxLoopCount - 1
 If MB_Write(1, &H6000, mb_buffer, 2) Then
 'message transmitted okay
 frmMain.lbl_MB_Xsum.Text = "Valid"
 frmMain.lbl_MB_Xsum.ForeColor = Color.Black

 'wait to allow that first message to be processed
 Pause(50) '200 ms

 'now retrieve data from address &h6100
 If MB_Read(1, &H6100, mb_buffer, 86) Then
 'message received okay
 frmMain.lbl_MB_Xsum.Text = "Valid"
 frmMain.lbl_MB_Xsum.ForeColor = Color.Black
 Exit Do
 Else
 'failed somehow
 frmMain.lbl_MB_Xsum.Text = "Invalid"
 frmMain.lbl_MB_Xsum.ForeColor = Color.Red
 g_MB_errors += 1
 End If

 Else
 'failed somehow
 frmMain.lbl_MB_Xsum.Text = "Invalid"
 frmMain.lbl_MB_Xsum.ForeColor = Color.Red
 g_MB_errors += 1
 frmMain.lbl_MB_total_errors.Text = Str(g_MB_errors)
 If frmMain.lbl_MB_total_errors.Text > 0 Then
 frmMain.lbl_MB_total_errors.ForeColor = Color.Red
 Else
 frmMain.lbl_MB_total_errors.ForeColor = Color.Black
 End If

 End If
 iLoopCount += 1
 UpdateCommStatus("Attempt:" + Str(iLoopCount + 1))
 Loop
 End Sub

6.7. ReadFastStatus

Send a 3 0 0 INCOM Fast Status request to an INCOM slave device. The response of the fast status
message is device dependent, but the comments in the code below show the interpretation of the fast
status response for the ATC-600 and -800 transfer switch controllers.

Input:

INCOMAdd INCOM 12-bit address of slave

Output:

values() Array variable that contains the returned data from the fast status request
 The meaning of these values depends on the INCOM slave device

20

WP www.eaton.com 12-Aug-14
 09:20:00

Public Function ReadFastStatus(ByRef INCOMAdd As UInt16, ByRef values As UInt16()) As Boolean

 Dim msg_temp(100) As Byte
 Dim mb_buffer As UInt16() = {0, 0}
 Dim iLoopCount As Integer

 Do While iLoopCount < giMaxLoopCount - 1
 If Not (SendINCOMCtrlMsg(INCOMAdd, 3, 0, 0, 1, msg_temp)) Then
 'message transmitted okay
 frmMain.lbl_MB_Xsum.Text = "Valid"
 frmMain.lbl_MB_Xsum.ForeColor = Color.Black
 'msg_temp(0) through msg_temp(3) contains the Fast Status data returned by the device
 'msg_temp(0) = [B0] of Msg 0
 'msg_temp(1) = status byte of INCOM Msg 0
 'msg_temp(2) = [B2] of Msg 0
 'msg_temp(3) = [B1] of Msg 0
 ' [B2] | [B1] | [B0]
 'S7 S6 S5 S4 S3 S2 S1 S0 | P5 P4 P3 P2 P1 P0 V3 V2 | V1 V0 D5 D4 D3 D2 D1 D0
 'sample reply from ATC
 '0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 0 1 1 0 0 0 1 0 0
 ' [0] [F] [5] [4] [C] [4]

 'S7 S6
 '0 0 On good source (see S2, S5)
 '0 1 Generator Start
 '1 0 Tranferred (see S2, S5)
 '1 1 Alarm
 'S5 1-Source 2 is connected
 'S4 1-Powered on since last fast status read attempt
 'S3 1-Unread time-stamped buffer available
 'S2 1-Source 1 is connected
 'S1 1-Source 2 is available
 'S0 1-Source 1 is available
 'P5-P0 product ID (ATC - 21)
 'V3-V0 communication software version (ATC - 0 [initial phase 2 version], 10 TDEN
extended to 8 hours)
 'D5-D0 division code (ATC - 4)

 values(0) = (msg_temp(2) And &HC0) \ 64 'S7S6
 values(1) = (msg_temp(2) And &H3F) 'S5-S0
 values(2) = (msg_temp(3) And &HFC) \ 4 'P5-P0
 values(3) = (msg_temp(3) And 3) + (msg_temp(0) And &HC0) \ 64 'V3-V0
 values(4) = (msg_temp(0) And &H3F) 'D3-D0

 Exit Do
 Else
 'failed somehow
 frmMain.lbl_MB_Xsum.Text = "Invalid"
 frmMain.lbl_MB_Xsum.ForeColor = Color.Red
 g_MB_errors += 1
 frmMain.lbl_MB_total_errors.Text = Str(g_MB_errors)
 If frmMain.lbl_MB_total_errors.Text > 0 Then
 frmMain.lbl_MB_total_errors.ForeColor = Color.Red
 Else
 frmMain.lbl_MB_total_errors.ForeColor = Color.Black
 End If
 ReadFastStatus = 0

 End If
 iLoopCount += 1
 UpdateCommStatus("Attempt:" + Str(iLoopCount + 1))
 Loop

 End Function

21

WP www.eaton.com 12-Aug-14
 09:20:00

6.8. ReadSPBuffer

Read the setpoint buffer from an INCOM slave. This version of the routine is designed to read the
setpoint buffer from an ATC-600 or -800 transfer switch controller. The routine could be modified to be
more general purpose.

Input:

giMaxLoopCount global variable giving number of messages expected in SP buffer

Output:

mb_buffer Modbus data returned

Public Sub ReadSPBuffer()

 Dim mb_buffer As UInt16()
 Dim Xsum As UInt16
 Dim iLoopCount As Integer

 'g_bCommActive = True 'tell other threads that we are using the comm port to talk to remote
device

 UpdateCommStatus("Reading setpoints from ATC")

 'clear out message on screen that says the SP buffer checksum is valid or invalid
 frmMain.lbl_Xsum.Text = "(unknown)"
 frmMain.lbl_Xsum.ForeColor = Color.Red
 frmMain.lbl_MB_Xsum.Text = "(unknown)"
 frmMain.lbl_MB_Xsum.ForeColor = Color.Red

 mb_buffer = {&HC3AB, &H9001}

 Do While iLoopCount < giMaxLoopCount - 1
 If MB_Write(1, &H6000, mb_buffer, 2) Then
 'message transmitted okay
 frmMain.lbl_MB_Xsum.Text = "Valid"
 frmMain.lbl_MB_Xsum.ForeColor = Color.Black

 'wait to allow that first message to be processed
 Pause(50) '200 ms

 'now retrieve data from address &h6100
 If MB_Read(1, &H6100, mb_buffer, 86) Then
 'message received okay
 frmMain.lbl_MB_Xsum.Text = "Valid"
 frmMain.lbl_MB_Xsum.ForeColor = Color.Black
 Exit Do
 Else
 'failed somehow
 frmMain.lbl_MB_Xsum.Text = "Invalid"
 frmMain.lbl_MB_Xsum.ForeColor = Color.Red
 g_MB_errors += 1
 End If

 Else
 'failed somehow
 frmMain.lbl_MB_Xsum.Text = "Invalid"
 frmMain.lbl_MB_Xsum.ForeColor = Color.Red
 g_MB_errors += 1
 frmMain.lbl_MB_total_errors.Text = Str(g_MB_errors)
 If frmMain.lbl_MB_total_errors.Text > 0 Then
 frmMain.lbl_MB_total_errors.ForeColor = Color.Red
 Else

22

WP www.eaton.com 12-Aug-14
 09:20:00

 frmMain.lbl_MB_total_errors.ForeColor = Color.Black
 End If

 End If
 iLoopCount += 1
 UpdateCommStatus("Attempt:" + Str(iLoopCount + 1))
 Loop

 'now verify that the setpoint buffer checksum matches what was sent
 If VerifyINCOMXsum(data_buffer, byte_counter) Then
 'valid INCOM xsum over 3 C 9 buffer
 frmMain.lbl_Xsum.Text = "Valid"
 frmMain.grp_PreferredSource.Enabled = True
 frmMain.lbl_Xsum.ForeColor = Color.Black
 Else
 'invalid INCOM xsum
 frmMain.lbl_Xsum.Text = "Invalid"
 frmMain.lbl_Xsum.ForeColor = Color.Red
 g_MB_errors += 1
 UpdateCommStatus("Unable to retrieve setpoints")
 Exit Sub
 End If

 'at this point we have downloaded a valid SP buffer. Save it
 SaveSPBuffer()

 'test *** calculate the SP Buffer Xsum
 Xsum = CalcSPBufferXsum(SPBuffer, byte_counter)

 'update error counter on screen
 frmMain.lbl_MB_total_errors.Text = Str(g_MB_errors)

 'display INCOM Xsum on screen
 frmMain.lbl_IXS.Text = Xsum

 'now print the data from the buffer to the screen
 print_data(data_buffer, array_count)

 'save the length of the SP buffer for later
 g_iSPArray_length = byte_counter

 'g_bCommActive = False 'tell other threads that the comm port is free to use

 UpdateCommStatus("")

 End Sub

6.9. SPWrite

A routine to write the setpoint buffer back to the INCOM slave using the INCOM pass-through functionality
of the MMINT/MPONI. As with the previous function (ReadSPBuffer), this routine is hard coded to support
writing to the ATC-600 or -800 setpoint buffer. The routine could be modified to be more general purpose
and support any device that uses the 3 F 9 INCOM (Receive Multi-Block Setpoint Data Packet).

Input:

SPBuffer VB buffer containing the setpoints to be transmitted

Output:

Public Sub SPWrite()
 'write back setpoints to ATC using 3 F 9 INCOM pass-through command
 Dim mb_buffer() As UInt16

23

WP www.eaton.com 12-Aug-14
 09:20:00

 Dim newSPXsum As UInt16
 Dim i As Integer
 Dim byte_pointer As Integer

 'update the checksum after changes have been made
 newSPXsum = CalcSPBufferXsum(SPBuffer, g_iSPArray_length)
 UpdateCommStatus("Writing ATC setpoints")

 'load checksum into appropriate registers
 SPBuffer(174) = newSPXsum \ 256 'high byte of checksum
 SPBuffer(171) = newSPXsum - SPBuffer(174) * 256 'low byte
 SPBuffer(173) = Not SPBuffer(171) 'complement of low byte

 'pass-through protcol requires that each message be transmitted separate
 'First, send 3 F 9
 mb_buffer = {&HF381, &H9001} '3 F 9 and 9000 + INCOM add
 If MB_Write(1, &H6000, mb_buffer, 2) Then
 'INCOM 3 F 9 control message transmitted okay
 frmMain.lbl_MB_Xsum.Text = "Valid"
 frmMain.lbl_MB_Xsum.ForeColor = Color.Black
 'now we need to send 43 additional INCOM data messages with updated setpoints
 For i = 1 To 43
 'download 42 setpoints. 43rd message is checksum of previous 42 setpoints
 'each message begins on a 4-byte boundary since each is 32-bits (2 Modbus registers) long
 byte_pointer = i * 4 - 1 'msg 1 ->3, 4, 5, 6; msg 2 -> 7, 8, 9, 10
 'mb_buffer(0) = [B0]01 mb_buffer(1) = [B2][B1]
 mb_buffer(0) = SPBuffer(byte_pointer) * 256 + 1
 mb_buffer(1) = SPBuffer(byte_pointer + 2) * 256 + SPBuffer(byte_pointer + 3)
 'transmit INCOM data message
 If MB_Write(1, &H6000, mb_buffer, 2) Then
 'successful write
 Else
 'failed to write
 frmMain.lbl_MB_Xsum.Text = "Invalid"
 frmMain.lbl_MB_Xsum.ForeColor = Color.Red
 frmMain.lbl_MB_total_errors.Text = Str(g_MB_errors)
 frmMain.rtb_Advisory.AppendText(vbCrLf + "MB Write to 0x6000, Msg:" + i + " failed" +
vbCrLf)
 Exit Sub 'exit early since the message will be discarded at INCOM device anyway
 End If
 Next
 Else
 'initial INCOM control message failed
 frmMain.lbl_MB_Xsum.Text = "Invalid"
 frmMain.lbl_MB_Xsum.ForeColor = Color.Red
 frmMain.lbl_MB_total_errors.Text = Str(g_MB_errors)
 frmMain.rtb_Advisory.AppendText(vbCrLf + "Unable to write 3 F 9 control message to 0x6000" +
vbCrLf)
 End If

 're-read the SP Buffer to verify all values were downloaded
 'ReadSPBuffer()

 UpdateCommStatus("Waiting to confirm")

 End Sub

6.10. CalcSPBufferXsum

Computes the checksum setpoint values. This value then can be appended to the end of the setpoint
buffer prior to transmitting to the INCOM slave. The INCOM slave will compare this calculated checksum
with its own checksum calculated over the received setpoints. If the two checkpoints are the same, the
INCOM slave will assume the setpoints are valid and will update its own setpoint values with these new
values.

24

WP www.eaton.com 12-Aug-14
 09:20:00

Input:

buffer Array buffer of setpoints

buffer_count number of values in setpoint buffer

Output:

Public Function CalcSPBufferXsum(ByVal buffer As Byte(), ByVal buffer_count As UInt16)
 'used to verify if the checksum over setpoints in 3 C 9 message matches what was sent
 Dim i As Integer
 Dim Xsum As UInt16

 'preload first byte into xsum
 Xsum = buffer(3)

 For i = 4 To buffer_count - 7 'subtract last two bytes for CRC, 4 for 43 msg
 'start with the 4th byte of the message (1st with real data)
 If (i Mod 4) Then
 Xsum = Xsum + buffer(i)
 End If
 Next

 CalcSPBufferXsum = Xsum

 End Function

6.11. VerifyINCOMXSum

Calculates the checksum of a setpoint buffer retrieved from an INCOM slave.

Input:

buffer VB array buffer containing retrieved setpoints

buffer_count Number of setpoints stored in the buffer array

Output:

VerifyINCOMXsum (0: invalid checksum, 1: valid checksum)

Public Function VerifyINCOMXsum(ByVal buffer As Byte(), ByVal buffer_count As Integer)
 'used to verify if the checksum over setpoints in 3 C 9 message matches what was sent
 Dim i As Integer
 Dim Xsum As UInt16
 Dim INCOMXsum As UInt16

 If buffer_count = 0 Then 'nothing received
 VerifyINCOMXsum = 0 'failed test
 Exit Function
 End If

 'preload first byte into xsum
 Xsum = buffer(3)

 For i = 4 To buffer_count - 7 'subtract last two bytes for CRC, 4 for 43 msg
 'start with the 4th byte of the message (1st with real data)
 If (i Mod 4) Then
 Xsum = Xsum + buffer(i)
 End If
 Next

 'now verify that the computed Xsum matches the Xsum in bytes 171 (low byte) and 174 (high byte)

25

WP www.eaton.com 12-Aug-14
 09:20:00

 INCOMXsum = buffer(174) * 256 + buffer(171)
 If (INCOMXsum <> Xsum) Then
 'invalid checksum
 VerifyINCOMXsum = 0
 Else
 'valid checksum
 VerifyINCOMXsum = 1
 End If
 End Function

26

WP www.eaton.com 12-Aug-14
 09:20:00

7. Appendix

The ATC-600 and -800 setpoint buffer cross-reference to Modbus register locations
1
.

Byte
MB
Reg Message Raw

Offset Offset Message Offset (Base 16)

0 01 Modbus node address

1 03 Modbus function code

2 7A Byte count returned

3 0 1 0 B0 H 2A # addl msgs (42d, 2Ah)

4 S L 00 status

5 1 B2 H 05 FW version

6 B1 L 03 FW revision

 Factory Set Options

7 2 2 1 B0 H 01 0. TDES enabled

8 S L 00 status

9 3 B2 H 01 2. TDEN enabled

10 B1 L 01 1. TDNE enabled

11 4 3 2 B0 H 01 3. TDEC enabled

12 S L 00 status

13 5 B2 H 01 5. S2 OF monitoring enabled

14 B1 L 01 4. S2 UF monitoring enabled

15 6 4 3 B0 H 01 6. S2 OV monitoring enabled

16 S L 00 status

17 7 B2 H 03

8. Transfer Time Bypass PB (0: disabled, 1: TDEN
bypass, 2: TDNE bypass, 3: TDEN/TDNE bypass either
timer)

18 B1 L 01 7. S2 UV monitoring enabled

19 8 5 4 B0 H 01 9. User selectable preferred source enabled

20 S L 00 status

21 9 B2 H 01 11. S1 UF monitoring enabled

22 B1 L 01 10. Plant Exerciser enabled

23 10 6 5 B0 H 01 12. S1 OF monitoring enabled

24 S L 00 status

25 11 B2 H 01 14. Type of operation (0: automatic, 1: user-selectable)

26 B1 L 01 13. S1 OV monitoring enabled

27 12 7 6 B0 H 01 TDN enabled

28 S L 00 status

29 13 B2 H 00 17. Pre-transfer signal on sub-net enabled

30 B1 L 00
16. TDN load sense (0: disabled, 1: enabled 2-30% of
nominal V) Note: option 15 & 16 mutually exclusive

31 14 8 7 B0 H 00 18. Remote sequencing on sub-net enabled

32 S L 00 status

33 15 B2 H 01 20. Overcurrent protection enabled

34 B1 L 01
19. Service Entrance (0: disabled [ignore go to neutral
input], 1: enabled [respond to go to neutral input])

35 16 9 8 B0 H 00 21. Type of switch (0: stored energy, 1: motor driven)

36 S L 00 status

37 17 B2 H 01 23. Load shed from S2 enabled

38 B1 L 00 22. User selectable PT ratio enabled

39 18 10 9 B0 H 01 24. S1 area protection enabled

1
 In the MMINT and MPONI, the data returned to the MMINT/MPONI as are result of a read request to an INCOM device is stored

in Modbus registers beginning at 610016. Therefore, message 1 will be stored in 610016 and 610116.

27

WP www.eaton.com 12-Aug-14
 09:20:00

40 S L 00 status

41 19 B2 H 00 26. Option 26 reserved

42 B1 L 00
25. 0: open transition only, 1: open or in-phase, 2: open or
in-phase or closed transition

28

WP www.eaton.com 12-Aug-14
 09:20:00

Byte
MB
Reg Message Raw

Offset Offset Message Offset (Base 16)

 User Programmable Options

43 20 11 10 B0 H 05 0. TDES timer - low byte (0-120 seconds)

44 S L 00 status

45 21 B2 H 05 1. TDNE timer low byte (0-1800 seconds)

46 B1 L 00 0. TDES timer high byte

47 22 12 11 B0 H 00 1. TDNE timer high byte

48 S L 00 status

49 23 B2 H 00 2. TDEN timer high byte (0-28800 s, 0 - 8 hours)

50 B1 L 05 2. TDEN timer low byte

51 24 13 12 B0 H 05 3. TDEC timer low byte (0-1800 seconds)

52 S L 00 status

53 25 B2 H 58 4. Nominal frequency low byte (50 or 60, Hz x 10)

54 B1 L 00 3. TDEC timer high byte

55 26 14 13 B0 H 02 4. Nominal frequency high byte

56 S L 00 status

57 27 B2 H 00
5. Nominal voltage high byte (110-600/50 Hz, 120-
600/60Hz)

58 B1 L 78 5. Nominal voltage low byte

59 28 15 14 B0 H 6A 6. S1 UV drop out voltage low byte

60 S L 00 status

61 29 B2 H 6A 7. S2 UV drop out level low byte

62 B1 L 00 6. S1 UV drop out voltage high byte

63 30 16 15 B0 H 00 7. S2 UV drop out level high byte

64 S L 00 status

65 31 B2 H 00 8. S1 UV pick up level high byte

66 B1 L 6C 8. S1 UV pick up level low byte

67 32 17 16 B0 H 6C 9. S2 UV pick up level low byte

68 S L 00 status

69 33 B2 H 7E 10. S1 OV drop out level low byte

70 B1 L 00 9. S2 UV pick up level high byte

71 34 18 17 B0 H 00 10. S1 OV drop out level high byte

72 S L 00 status

73 35 B2 H 00 11. S2 OV drop out level high byte

74 B1 L 81 11. S2 OV drop out level low byte

75 36 19 18 B0 H 7C 12. S1 OV pick up level low byte

76 S L 00 status

77 37 B2 H 7C 13. S2 OV pick up level low byte

78 B1 L 00 12. S1 OV pick up level high byte

79 38 20 19 B0 H 00 13. S2 OV pick up level high byte

80 S L 00 status

81 39 B2 H 02 14. S1 UF drop out level high byte

82 B1 L 46 14. S1 UF drop out level low byte

83 40 21 20 B0 H 46 15. S2 UF drop out level low byte

84 S L 00 status

85 41 B2 H 52 16. S1 UF pick up level low byte

86 B1 L 02 15. S2 UF drop out level high byte

29

WP www.eaton.com 12-Aug-14
 09:20:00

Byte MB Reg Message Raw

Offset Offset Message Offset (Base 16)

87 42 22 21 B0 H 02 16. S1 UF pick up level high byte

88 S L 00 status

89 43 B2 H 02 17. S2 UF pick up level high byte

90 B1 L 50 17. S2 UF pick up level low byte

91 44 23 22 B0 H 6A 18. S1 OF drop out level low byte

92 S L 00 status

93 45 B2 H 6A 19. S2 OF drop out level low byte

94 B1 L 02 18. S1 OF drop out level high byte

95 46 24 23 B0 H 02 19. S2 OF drop out level high byte

96 S L 00 status

97 47 B2 H 02 20. S1 OF pick up level high byte

98 B1 L 5E 20.S1 OF pick up level low byte

99 48 25 24 B0 H 5E 21. S2 OF pick up level low byte

100 S L 00 status

101 49 B2 H 01 22. TDN with load sensing low byte (0: no, 1: yes)

102 B1 L 02 21. S2 OF pick up level high byte

103 50 26 25 B0 H 00 22. TDN with load sensing high byte

104 S L 00 status

105 51 B2 H 00 23. TDN timer high byte

106 B1 L 03 23. TDN timer low byte

107 52 27 26 B0 H 1E 24. Load voltage decay threshold low byte (2-30%)

108 S L 00 status

109 53 B2 H 01 25. Preferred source selection - low byte (0: none, 1:S1,
2:S2)

110 B1 L 00 24. Load voltage decay threshold high byte

111 54 28 27 B0 H 00 25. Preferred source selection - high byte

112 S L 00 status

113 55 B2 H 00 26. Plant exerciser high byte

114 B1 L 01 26. Plant exerciser low byte (0: disabled, 1: enabled)

115 56 29 28 B0 H 00 27. Plant exerciser load transfer low byte (0: disabled, 1:
enabled)

116 S L 00 status

117 57 B2 H 02 28. Plant exerciser day of week low byte (1: Sun, 2:
Monday, etc.)

118 B1 L 00 27. Plant exerciser load transfer high byte

119 58 30 29 B0 H 00 28. Plant exerciser day of week high byte

120 S L 00 status

121 59 B2 H 00 29. Plant exerciser hour of day high byte

122 B1 L 0A 29. Plant exerciser hour of day low byte

123 60 31 30 B0 H 00 30. Plant exerciser minute low byte

124 S L 00 status

125 61 B2 H 00 31. Manual retransfer mode low byte (0: auto, 1: pb
return)

126 B1 L 00 30. Plant exerciser minute high byte

127 62 32 31 B0 H 00 31. Manual retransfer mode high byte

128 S L 00 status

129 63 B2 H 00 32. Commit to transfer in TDNE high byte

130 B1 L 00 32. Commit to transfer in TDNE low byte (0: not, 1:
committed)

30

WP www.eaton.com 12-Aug-14
 09:20:00

Byte MB Reg Message Raw

Offset Offset Message Offset (Base 16)

131 64 33 32 B0 H 01 33. Test mode engine start only low byte (0: no load
transfer, 1: load xfer, 2: disable test)

132 S L 00 status

133 65 B2 H 01 34. Engine run test time (minutes) low byte (0-600 min)

134 B1 L 00 33. Test mode engine start only high byte

135 66 34 33 B0 H 00 34. Engine run test time (minutes) high byte

136 S L 00 status

137 67 B2 H 00 35. Subnet pretransfer time (seconds) high byte

138 B1 L 03 35. Subnet pretransfer time (seconds) low byte (0-120
sec)

139 68 35 34 B0 H 01 36. Number of generators low byte

140 S L 00 status

141 69 B2 H 03 37. 3P or 1P monitoring high byte

142 B1 L 00 36. Number of generators high byte

143 70 36 35 B0 H 00 37. 3P or 1P monitoring low byte (1 or 3)

144 S L 00 status

145 71 B2 H 00 38. Subnet sequencing timer (seconds) high byte

146 B1 L 03 38. Subnet sequencing timer (seconds) low byte

147 72 37 36 B0 H 02 39. PT ratio low byte read only 2-500(:1)

148 S L 00 status

149 73 B2 H 01 40. Closed transition on/off low byte (0: disabled, 1:
enabled)

150 B1 L 00 39. PT ratio high byte

151 74 38 37 B0 H 00 40. Closed transition on/off high byte

152 S L 00 status

153 75 B2 H 00 41. Closed transition phase angle difference high byte

154 B1 L 05 41. Closed transition phase angle difference low byte (0-
10 deg)

155 76 39 38 B0 H 03 42. Closed transition frequency difference low byte (0.0 -
0.3 Hz)

156 S L 00 status

157 77 B2 H 06 43. Closed transition voltage difference low byte (1-5%)

158 B1 L 00 42. Closed transition frequency difference high byte

159 78 40 39 B0 H 00 43. Closed transition voltage difference high byte

160 S L 00 status

161 79 B2 H 00 44. In-phase transition on/off high byte

162 B1 L 00 44. In-phase transition on/off low byte

163 80 41 40 B0 H 02 45. In-phase transition phase angle difference low byte
(0.0-60 deg)

164 S L 00 status

165 81 B2 H 0A 46. In-phase transition frequency difference low byte

166 B1 L 00 45. In-phase transition phase angle difference high byte

167 82 42 41 B0 H 00 46. In-phase transition frequency difference high byte

168 S L 00 status

169 83 B2 H 00 47. Maximum synchronization time (minutes) high byte

170 B1 L 05 47. Maximum synchronization time (minutes) low byte

171 84 43 42 B0 H FD Checksum (sum of previous 42 messages) low byte

172 S L 00 status

173 85 B2 H 02 Complement of Checksum low byte

174 B1 L 07 Checksum (sum of previous 42 messages) high byte

