

Aging Correctional Facility Electrical System Improvements

David Loucks, P.E.

© 2002 Eaton Corporation. All rights reserved.

Process

Situation

 The 'Quiet Crisis' Term created by Paul Hubbel, Deputy Director, Facilities and Services, Marine Corps. Government Executive Magazine, Sept 2002.

When he was asked "why isn't preventative maintenance adhered to more closely in government facilities?"

"We call it the 'quiet crisis' because a lot of maintenance problems take time to occur and are not noticed (to be problems) until damage occurs".

Correctional Facilities

- Okay, so maybe the military has a problem with maintenance, but what about Correctional Facilities?
- What happens if the power goes out at your facility for an extended period of time?

ET·N Cutler-Hammer

 WASCO State Prison, California Department of Corrections

"Wasco suffered an electrical failure in April 1999 that caused a total power outage lasting almost seven hoursa problem that Wasco could have prevented had management made certain that staff repaired previously identified flaws in the electrical system."

California State Auditor/Bureau of State Audits Summary of Report Number 99118 - October 1999

Cutler-Hammer

On Tuesday, July 9th 2002, the Sheriff's Department experienced a power outage. Normally, this is not a major problem as our backup generator provides electrical power in the event of an outage. However, this was not the case on July 9th, and the detention facilities did not have electrical power for four hours."

http://www.yolocountysheriff.com/myweb5/Sheriff%20Final/2002%20Commendation%20Awards/Tina%20Day.pdf

Case Study

 Riverside Correctional Facility, Michigan

"...however, in April 1998, RCF lost its main power source and the emergency generator failed to start. This resulted in an emergency situation for RCF." Performance Audit, Michigan Department of Corrections, Feb 1999

 Mid-Michigan Correctional Facility (MMCF)

Cutler-Hammer

"Finding: Preventive Maintenance and Safety Inspections MMCF did not complete preventive maintenance and safety inspections on a timely basis. DOC policy and facility procedures require regular inspections to minimize equipment failures, breakdowns, or potential problem conditions with the facility's water, electrical, mechanical, and security systems and to identify and correct potential safety hazards. Performance Audit, Michigan Department of Corrections, June 1999

Why is Maintenance Skipped?

- Clearly there are problems, but why?
- Budget Cuts / Management Redirection of Maintenance Funds
- This results in "Crisis Mode Operation" or "Fix What's Broke and Skip the Rest" mentality
- But how do you guess what will break next and where money should be targeted?
- Is there an analytical way of targeting scarce resources?

Switchgear Failure Scenario

- What is the likelihood of a loss of MV power at either the Administration Building or at Health Services?
- Answer:
 f(SW1) + f(CBL1)+ f(TX1)+ f(CBL2)
 + f(BKR1)+ f(RLY1)+ f(BUS1) +
 f(BKR2)+ f(RLY2)+ f(BKR5) +
 f(RLY5) + f(CBL6)
 f() means hours/year failure rate

- f(...) means hours/year failure rate

Cutler-Hammer

Failure Time / Year

- Failures / Year
 - How often failures occur
 - Mean Time Between Failures
- Duration (hrs) / Failure
 - How long it takes to repair a failure

 $\frac{\text{Failures}}{\text{Year}} * \frac{\text{Duration}}{\text{Failure}} = \frac{\text{Duration}}{\text{Year}}$

IEEE Gold Book Analysis

Cutler-Hammer

Category	Failures/yr	Hours/Failure	Hours/Yr
Prot. Relays	.0002	5	.001
LV Swgr Bkrs	.0027	4	.0108
MV Swgr Bkrs	.0036	2.1 / 83.1*	.0076/.2992
LV Cable (1000 ft)	.00141	10.5	.0148
MV Cable (1000 ft)	.00613	26.5	.1624
Disc. Switches	.0061	3.6	.022
Transformer	.003	342	1.026
LV Swgr Bus	.0024	24	.0576
MV Swgr Bus	.0102***	26.8	.2733

* when no on-site spare is available ** below ground *** 3 connected to 3 breakers

Switchgear Failure Scenario

- f(SW1) + f(CBL1) + f(TX1) + f(CBL2) + f(BKR1) + f(RLY1) + f(BUS1) + f(BKR2) + f(RLY2) + f(BKR5) + f(RLY5) + f(CBL6)
- 1 incoming disconnect switch (.022 hrs/yr)
- 300' incoming MV cable (300/1000 * 0.1624 = 0.049 hrs/yr)
- 1 incoming transformer (1.026 hrs/yr)
- 100' cable (TX to gear) (100/1000 * 0.1624 = 0.0162 hrs/yr)
- 1 MV bus run with 3 MV breakers
 (.2733 + 3(.2992)=1.1709 hrs/yr)
- 3 protective relays $(3^*.001 = 0.003)$
- 300' outbound MV cable (300/1000 * 0.1624 = 0.049 hrs/yr)
- Total = 0.022 + 0.049 + 1.026 + 0.0162 + 1.1709 hrs/yr + 0.003 + 0.049
 = 2.33 hrs/yr (average)

Cutler-Hammer

8757.67 = 99.97%

Equipment Failure Timing

- Initial failures (installation problems, infant mortality of installed components).
- Degradation over time (temperature, corrosion, dirt, surge)

Equipment Failure Timing

 Poor maintenance reduces equipment life since failures due to degradation come prematurely soon. IEEE says add 10% to likelihood of downtime.

F-T•N

Cutler-Hammer

Results

- Fair Maintenance = 2.59 hrs/year downtime
- Good Maintenance = 2.33 hrs/year downtime
- 2.59 2.33 = 0.26 hr/yr less downtime
- 16 minutes per year more downtime Is that worth spending any time fixing?

... but this is only a simple example

Real Systems Are Much Larger

Glenville Federal Penitentiary – MV System

- 17 MV breakers
- 14 MV loop feed switches
 - 3 switching elements
 - 42 total
- 31 MV internal bus runs
 - . (17+14)
- 4000' MV cable
- 15 MV transformers
- 3 standby generators

Cutler-Hammer

LV System Are Very Complex Too...

- 13 switchboards containing:
 - 155 LV breakers
- 105 panelboards containing:
 - Over 2000 panelboard breakers
- 1000's of cable terminations
- 30000 feet of cable

Glenville Federal Penitentiary – LV System (Page 1 of 2)

Cutler-Hammer

Likelihood of Some Failure?

Cutler-Hammer

Just looking at a portion of the equipment...

- 42 MV disconnect switches (42 * .022 = 0.924 hrs/yr)
- 4000' MV cable (4000/1000 * 0.1624 = 0.649 hrs/yr)
- 15 MV transformers (15.39 hrs/yr)
- 30000' LV cable (30000/1000 * 0.0148 = 0.444 hrs/yr)
- 31 MV bus run with 17 MV breakers (31(0.2733) + 17(.2992)= 8.47 + 17.23 = 25.77 hrs/yr)
- 17 protective relays (17*.001 = 0.017)
- Total = 0.924 + 0.649 + 15.39 + 0.444 + 25.77 + 0.017

= 43.19 hrs/yr (average)

(Assuming a 1 hr/per failure means you would expect an electrical problem 43 times per year or almost 1 per week!)

MV Transformers Win! (Lose?)

Cutler-Hammer

- We now know how to figure "how many minutes of outage will occur each year" for each device.
- But how do we reduce that value?
- We can recognize that failures can be predicted if we recognize the early warning signs
 - The so-called "Predictive Indicator"
- Once we know that, we can identify the likely cause and fix the problem before it is serious.

Predicting Failures

Failure Contributing Causes

Combined Analysis of Switchgear Bus an	d Circuit Br	eaker Fail	ure		
Contributing Causes (%)					
Switchgear Bus Failure Contributing Cause	Insulated	Bare Bus	Breakers	Totals	Normalized
(%) Percentage	Bus				to 100%
Thermocycling	6.6%		12.5%	19.1%	7.5%
Mechanical Structure Failure	3.0%	8.0%		11.0%	4.3%
Mechanical Damage From Foreign Source	6.6%			6.6%	2.6%
Shorting by Tools or Metal Objects		15.0%		15.0%	5.9%
Shorting by Snakes, Birds, Rodents, etc.	3.0%			3.0%	1.2%
Malfunction of Protective Relays	10.0%	4.0%		14.0%	5.5%
Improper Setting of Protective Device		4.0%		4.0%	1.6%
Above Normal Ambient Temperature	3.0%			3.0%	1.2%
Exposure to Chemical or Solvents	3.0%	15.0%		18.0%	7.1%
Exposure to Moisture	30.0%	15.0%		45.0%	17.7%
Exposure to Dust or Other Contaminants	10.0%	19.0%		29.0%	11.4%
Exposure to Non-Electrical Fire or Burning	6.6%			6.6%	2.6%
Obstruction of Ventilation		8.0%		8.0%	3.1%
Normal Deterioration from Age	10.0%	4.0%	11.0%	25.0%	9.8%
Severe Weather Condition	3.0%	4.0%		7.0%	2.8%
Testing Error		4.0%		4.0%	1.6%
Lubricant Loss, or Deficiency			18.0%	18.0%	7.1%
Lack of Preventive Maintenance			18.0%	18.0%	7.1%
Other - Breaker Related			40.5%		
Totals	94.8%	100.0%	100.0%	254.3%	100.0%

Contributing → Initiating Cause

Switchgear Bus & Breaker Failure Contributing Cause (%)	Most Probable Initiating Cause for Failure Contributor	%
Thermocycling	Loose connections, load current, internal temperature, ambient, cubicle heaters, etc.	7.5%
Mechanical Structure Failure	Fatigue, vibration, electrical loose components	4.3%
Mechanical Damage From Foreign Source	Accidental action during maintenance / Enclosure Openings	2.6%
Shorting by Tools or Metal Objects	Accidental action during maintenance / Enclosure Openings	5.9%
Shorting by Snakes, Birds, Rodents, etc.	Enclosure Openings	1.2%
Malfunction of Protective Relays	Relay failure	5.5%
Improper Setting of Protective Device	Improper relay settings	1.6%
Above Normal Ambient Temperature	Ambient Temperature	1.2%
Exposure to Chemical or Solvents	Corona or Surface Tracking / Enclosure Openings	7.1%
Exposure to Moisture	Corona or Surface Tracking / Enclosure Openings / Cubicle Heater Circuit Failure	17.7%
Exposure to Dust or Other Contaminants	Corona or Surface Tracking	11.4%
Exposure to Non-Electrical Fire or Burning	External activity	2.6%
Obstruction of Ventilation	Clogged door or other filters	3.1%
Normal Deterioration from Age	Normal deterioration: corona or surface tracking of the insulation; contacts, interrupters, springs, mechanisms, etc.	9.8%
Severe Weather Condition	External activity	2.8%
Testing Error	External activity	1.6%
Lubricant Loss, or Deficiency	Overheating of the equipment and lubrication, aged lubricants or loss-of lubricants	7.1%
Lack of Preventive Maintenance	External activity	7.1%

Initiating Causes -**Predictive Indicators**

Most Probable Initiating Cause for Failure Contributor	 Available Solutions to address Initiating Causes 	%			
Loose connections, load current, internal temperature, ambient, cubicle heaters, etc.	On-Line Thermal Model Analyzer & Thermography for Hot Spots	7.5%			
Fatigue, vibration, electrical loose components	Thermography for Hot Spots and Future Vibro-acoustics of electrical equipment	4.3%			
Accidental action during maintenance / Enclosure Openings	Safety during maintenance & Visual Inspections	2.6%			
Accidental action during maintenance / Enclosure Openings	Safety during maintenance & Visual Inspections	5.9%			
Enclosure Openings	Visual Inspections	1.2%			
Relay failure	Periodic Relay Testing	5.5%			
Improper relay settings	Periodic Power System Study	1.6%			
Ambient Temperature	On-Line Thermal Model Analyzer	1.2%			
Corona or Surface Tracking / Enclosure Openings	Partial Discharge Detection & Visual Inspection	7.1%			
Corona or Surface Tracking / Enclosure Openings / Heater Circuit Failure	Partial Discharge Detection & Visual Inspec- tion & On-Line Thermal Model Analyzer	17.7%			
Corona or Surface Tracking	Partial Discharge Detection (External visual inspection can not detect internal bus)	11.4%			
External activity	On-Line Thermal Model Analyzer & Inspection of External area	2.6%			
Clogged door or other filters	On-Line Thermal Model Analyzer & Thermography for Hot Spots	3.1%			
Normal deterioration: corona or surface tracking of the insulation; contacts, interrupters, springs, mechanisms, etc.	Partial Discharge Detection and Thermography for Hot Spots	9.8%			
External activity	None	2.8%			
External activity	Safety during maintenance & Improved preventive maintenance	1.6%			
Overheating of equipment and lubrication age or loss-of lubricants	Future vibro-acoustics of electrical equipment	7.1%			
External activity	Improve preventive maintenance	7.1%			

Available Predictive Tools

Available Solutions to address Initiating Causes	Totals	Normalized to the new 100%	% of Total Failure Causes Addressed	On-Line Predictive Diagnostic - Mo Capabilities Available	nitoring
On-Line Thermal-Model Analyzer	32.1%	18.1%	15.6%	Technology available for continuous monitoring	15.6%
Thermography for Hot Spots	24.7%	13.9%	12.0%	Yes - Periodic	12.0%
Future vibro-acoustics of electrical equipment	11.4%	6.4%	5.6%	Not fully commercially available	
Safety during maintenance	10.1%	5.7%	4.9%	NA	
Visual Inspections (Switchgear Enclosure and Surrounding Area)	37.1%	20.9%	18.1%	Periodic - Plant Personnel / Safety Operating Procedures	and
Periodic Relay Testing	5.5%	3.1%	2.7%	Periodic Relay Testing	
Periodic Power System Study	1.6%	0.9%	0.8%	Periodic Power System Study	
Partial Discharge Detection	46.0%	26.0%	22.4%	Yes - Periodic	22.4%
Improve preventive maintenance	8.7%	4.9%	4.2%	NA	
Totals	177.2%	100.0%	86.3%	Total Causes address by CBM:	50.1%

- Top 4 in order of importance are:
- Partial Discharge Diagnostics (22.4%)
- Visual Inspection (18.1%)
- On-Line Thermal Analyzer (15.6%)
- Thermographic Inspections (12.0%)

Cutler-Hammer

What If We Implemented One Predictive Solution?

- Partial Discharge 22.4% of failures detected
 - Caveat: Only works on medium voltage (>1000 volts)
- Our example prison:
 - 15.39 hrs/yr from transformer failure
 - 22.4% reduction ⇒ 11.94 hrs/yr
 - 8.47 hrs/yr from MV bus failure
 - 22.4% reduction ⇒ 6.57 hrs/yr
 - 17.23 hrs/yr from MV breaker failure
 - 22.4% reduction ⇒ 13.37 hrs/yr

Reduction In Outages

- Transformer Failure (was 15.39 hrs/yr, now 11.94 hrs/yr)
 - Saving 3.45 hrs/yr
- MV bus failure (was 8.47 hrs/yr, now 6.57 hrs/yr)
 - Saving 1.9 hrs/yr
- MV breaker failure (was 17.23 hrs/yr, now 13.37 hrs/yr)
 - Saving 3.86 hrs/yr
- Total Savings from PD 9.21 hrs/yr
 - 1 hr/failure = 9 fewer failures
 - 10 hr/failure = 1 fewer failure

Cutler-Hammer

F:T•N

Economic Justification

Category	Failures/yr	Hours/Failure	Hours/Yr
Prot. Relays	.0002	5	.001
LV Swgr Bkrs	.0027	4	.0108
MV Swgr Bkrs	.0036	2.1 / <mark>83.1</mark> *	.0076/. <mark>2992</mark>
LV Cable (1000 ft)	.00141	10.5	.0148
MV Cable (1000 ft)	.00613	26.5	.1624
Disc. Switches	.0061	3.6	.022
Transformer	.003	342	1.026
LV Swgr Bus	.0024	24	.0576
MV Swgr Bus	.0102***	26.8	.2733

* when no on-site spare is available ** below ground *** 3 connected to 3 breakers **Cutler-Hammer**

Average Outage

Device	Quantity	Hrs/Failure	Combined
MV Breaker	15	83.1	1246.5
MV Disconnect Switch	42	3.6	151.2
MV Bus	31	26.8	830.8
MV Cable (1000 ft)	<u>4</u>	<u>26.5</u>	<u>106</u>
	92		2334.5
		25 375	hours/failura

25.375 nours/failure

(weighted average)

Compute Likely Failure Rate

Total Savings from PD
 9.21 hrs/yr

25.4 hrs/ failure

- 1 hr/failure = 9 fewer failures per year
- 10 hr/failure = 1 fewer failure per year
- 25.4 hr/failure = 0.36 fewer failures per year
 - 1 fewer failure every 3 years

ET·N Cutler-Hammer

How Much Does It Cost?

- We know that if we install PD sensors on all this equipment, statistically it will result in 1 less outage every three years.
- Each PD sensor costs ~ \$7000 installed
- We have 92 items to be monitored
- \$7000 * 92 = \$644000
- Does saving an outage once every 3 years justify spending \$644000?

Failed Equipment Cost

\$ Per Hour of Outage Cost \$10,000

	Α	В		С		D		E		F		G
		% Related to								Yearly		
	Median	Insulation		Total		Monitor	In	stallation	Mo	onitoring (5		
	Hours/Outage	Failure	E	xposure	Ma	terial Cost		Cost		Years)	Tot	al Cost
Large Power Transformers (6 bushings)	1260	84	\$1	0,584,000	\$	12,000	\$	10,000	\$	5,000	\$	27,000
Small Power Transformers (Liquid)	64	84	\$	537,600	\$	3,500	\$	3,000	\$	5,000	\$	11,500
Dry Type Transformers	28	84	\$	235,200	\$	3,500	\$	3,000	\$	5,000	\$	11,500
										-		
MV Switchgear (Bus Only) 10 Structures	26.8	95	\$	254,600	\$	15,000	\$	8,500	\$	5,000	\$	28,500
			1							-	_	
Bus Duct-30 Feet	9.5	75	\$	71,250	\$	8,500	\$	3,500	\$	5,000	\$	17,000
Large MV Induction Motors	91.5	53	\$	484,950	\$	7,500	\$	6,000	\$	5,000	\$	18,500
Large MV Synchronous Motors	153	53	\$	810,900	\$	7,500	\$	6,000	\$	5,000	\$	18,500
Steam Turbine Generators	66.5	7	\$	46,550	\$	10,500	\$	8,000	\$	5,000	\$	23,500
Gas Turbine Generators	92	7	\$	64,400	\$	9,500	\$	7,000	\$	5,000	\$	21,500
	Data taken	Data taken	Th	is equals								
Notes	from IEEE Std	from IEEE	\$/H	Hr outage								
	493-1997 -	Std 493-1997	CO	ost times								
	Pages 205-	- Pages 246-	Co	ol A times							Coll	D + Col E
	207	253		Col B							+	Col F

Your Mileage May Vary...

Using this \$10000 assumption...

- At \$10,000 / hour of downtime costs
 - Loss of one of the small power transformers would cost:
 - \$537000 of downtime (\$240,000 / day)
 - Cost of a 1000 kVA indoor dry, MV power transformer
 - Assume \$18/kVA or \$18000
 - Assume labor \$50/hr, 3 man-days labor
 - Total cost = (1000 * \$18) + (\$50 * 3 * 8) = \$18000 + \$1200
 Total cost = \$19200
 - Downtime and material = \$537000 + \$19200
 Downtime and material = \$556200

Compute Payback

- Our cost is \$644000
- Our savings is \$556200 once every 3 years or \$185400 per year
- Assume we expect a 10% return on invested capital
- Assume 10 year project life
- Assume 2.5% inflation rate

Compute Equivalent Payback

- Cost = \$644K, Savings = \$185.4/yr, N=10 years, inflation = 2.5%, capital cost = 10%
- Is this a good investment?

Compounded IRR Calculator

$$n = \frac{\log_{10} \left(\frac{Cost}{Savings} \left(a - \frac{1}{a} \right) + 1 \right)}{\log_{10} a}$$

Cost	installed cost of equipment
Savings	annual savings
а	(1+g)/(1+i)
i	interest rate
g	annual inflation rate
n	duration (payback period in years)

Compounded IRR Calculator

$$n = \frac{\log_{10} \left(\frac{Cost}{Savings} \left(a - \frac{1}{a} \right) + 1 \right)}{\log_{10} a}$$

Cost	\$644,000
Savings	\$185,400
а	(1+g)/(1+i) = (1+0.025)/(1+0.1) = 0.932
i	10%
g	2.5%
n	10

Run The Numbers...

Cost \$644,000 **Savings** \$185,400 (1+g)/(1+i) = (1+0.025)/(1+0.1) = 0.932a i 10% 2.5% g 10 n $(c \Lambda \Lambda c c c)$ $(\circ (\land))$) .

$$n = \frac{\log_{10} \left(\frac{C}{S} \left(a - \frac{1}{a} \right) + 1 \right)}{\log_{10} a} = \frac{\log_{10} \left(\frac{644000}{185400} \left(0.932 - \frac{1}{0.932} \right) + 1 \right)}{\log_{10} 0.932}$$

Compute Payback

$$n = \frac{\log_{10} \left(\frac{644000}{185400} \left(0.932 - \frac{1}{0.932} \right) + 1 \right)}{\log_{10} 0.932} = \frac{\log_{10} (3.47(-0.141) + 1)}{-0.0306}$$

$$n = \frac{\log_{10}(3.47(-0.141)+1)}{-0.0306} = \frac{\log_{10}0.510}{-0.0306}$$

$$n = \frac{\log_{10} 0.510}{-0.0306} = \frac{-0.292}{-0.0306} = 9.6$$

What Does 9.6 Mean?

- Based on a cost of \$644K, an annual savings of \$185.4K, a required rate of return of 10%, and inflation rate of 2.5%...
 - 9.6 means a payback is achieved in 9.6 years
 - means that the payback is under 10 years
- Since our project life is 10 years
 - ...this project is financially viable.

Said another way:

• This project completely pays for its initial capital expense, plus it returns 10% additional cash over the 10 year life.

Do I have To Do All This Work?

- Yes...but
- To simplify, use a web based calculator:
 - <u>http://ppsnews.com/Internet/apps/pd/</u>

I've Found Problems, Now What?

- If you catch it before it fails catastrophically, you can rebuild
- Many old electrical devices can be rebuilt to like new condition

LV Refurbished Power Breakers

• LV Equipment Retrofit / "Roll-In" Replacements

- (W) C-H
- ITE GE
- AC FPE
- Siem R-S

510- Upgraded Trip 610- Display

F-T-N

810-KW-Comm-O/C 910-Harmonics Cutler-Hammer

LV Rack-In Replacement With New (In Old Equipment)

Old Breaker:

 Parts no longer available

F:T•N

Modern Breaker:

- New warranty
- Installed in the old structure

Cutler-Hammer

Motor Control Upgrades

Breaker-to-Starter Conversions:

- circuit breaker used to start motor
- only good for 1000 or less operations
- replace breaker with starter
- now good for 1,000,000 operations

Continuous Partial Discharge Monitor

MCC Bucket Retrofits - new breaker and starter

F-T•N

Cutler-Hammer

MV Vacuum Replacement

- •Vacuum replacement for Air Break in same space
- Extensive Product Availability
 - ANSI Qualified Designs
 - 158 Designs
- Non-Sliding Current Transfer
- SURE CLOSE Patented (MOC Switches)
- 2-Year Warranty Dedicated Service
- Factory Trained Commissioning Engineers
- Full Design & Production Certification
- ANSI C37.59 Conversion Standard
- ANSI C37.09 Breaker Standard
- ANSI C37.20 Switchgear Standard
- Design Test Certificate Available on Request

Can't Buy a Spare? Class 1 Recondition Instead

- Receiving & Testing
- Complete Disassembly
- Detailed Inspection and Cleaning
- New Parts
- OEM Re-assembly
- Testing
- Data-Base Tracking

Spot Network Upgrade

Network Protector Class 1 Recondition

Network Relay Upgrades...

F-T-N

Cutler-Hammer

Transformer Oil Processing

Other Services Available:

- Samples Obtained On-Site
- Mail-in Sampling Kits
- Complete Transformer Testing
- PF, PCB & Dissolved Gas Analysis

On-Board Testing Dielectric Testing Karl Fischer Moisture Test Acid Titration Testing

Thank You

© 2002 Eaton Corporation. All rights reserved.

Supporting Documents

© 2002 Eaton Corporation. All rights reserved.

Wasco Situation

"Wasco has not followed its own policies that direct management to create an atmosphere of vigilance in which emergency equipment receives sufficient maintenance..." California State Auditor/Bureau of State Audits Summary of Report Number 99118 - October 1999

"Wasco has considerable backlog of incomplete maintenance and repairs on its critical equipment. Its failure to repair defective equipment nearly 4 years ago resulted in a complete loss of power in April 1999." California State Auditor/Bureau of State Audits Summary of Report Number 99118 - October 1999

Recommendations

Findings:

"RCF had not developed a comprehensive preventive maintenance plan.

DOC policy states that the warden shall develop a written preventative maintenance plan. The plan is to be designed to provide economical use of all facility equipment and to ensure that all equipment will operate effectively during emergency situations".

www.state.mi.us/audgen/comprpt/docs/r4723098.pdf

